Decroissance exponentielle du noyau de la chaleur sur la diagonale (I)

G. Ben Arous, R. Léandre

Research output: Contribution to journalArticle

Abstract

We give examples based upon large deviation's theory where the heat kernel of a degenerate diffusion has an exponential decay over the diagonal. Using Malliavin calculus, we give conditions for a more generalized heat kernel to have an exponential decay over the diagonal. We give lower bound in some particular case by using the Bismut's condition.

Original languageFrench
Pages (from-to)175-202
Number of pages28
JournalProbability Theory and Related Fields
Volume90
Issue number2
DOIs
StatePublished - Jun 1991

ASJC Scopus subject areas

  • Statistics and Probability
  • Analysis
  • Mathematics(all)

Cite this

Decroissance exponentielle du noyau de la chaleur sur la diagonale (I). / Ben Arous, G.; Léandre, R.

In: Probability Theory and Related Fields, Vol. 90, No. 2, 06.1991, p. 175-202.

Research output: Contribution to journalArticle

@article{6a2bceb31ccc4bfbb3b31f2aebf3f76e,
title = "Decroissance exponentielle du noyau de la chaleur sur la diagonale (I)",
abstract = "We give examples based upon large deviation's theory where the heat kernel of a degenerate diffusion has an exponential decay over the diagonal. Using Malliavin calculus, we give conditions for a more generalized heat kernel to have an exponential decay over the diagonal. We give lower bound in some particular case by using the Bismut's condition.",
author = "{Ben Arous}, G. and R. L{\'e}andre",
year = "1991",
month = "6",
doi = "10.1007/BF01192161",
language = "French",
volume = "90",
pages = "175--202",
journal = "Probability Theory and Related Fields",
issn = "0178-8051",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - Decroissance exponentielle du noyau de la chaleur sur la diagonale (I)

AU - Ben Arous, G.

AU - Léandre, R.

PY - 1991/6

Y1 - 1991/6

N2 - We give examples based upon large deviation's theory where the heat kernel of a degenerate diffusion has an exponential decay over the diagonal. Using Malliavin calculus, we give conditions for a more generalized heat kernel to have an exponential decay over the diagonal. We give lower bound in some particular case by using the Bismut's condition.

AB - We give examples based upon large deviation's theory where the heat kernel of a degenerate diffusion has an exponential decay over the diagonal. Using Malliavin calculus, we give conditions for a more generalized heat kernel to have an exponential decay over the diagonal. We give lower bound in some particular case by using the Bismut's condition.

UR - http://www.scopus.com/inward/record.url?scp=0001593714&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001593714&partnerID=8YFLogxK

U2 - 10.1007/BF01192161

DO - 10.1007/BF01192161

M3 - Article

AN - SCOPUS:0001593714

VL - 90

SP - 175

EP - 202

JO - Probability Theory and Related Fields

JF - Probability Theory and Related Fields

SN - 0178-8051

IS - 2

ER -