Decentralized robust control for a class of large-scale nonlinear systems

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Decentralized robust control for a class of large-scale nonlinear systems with strong nonlinear interconnections is considered in this paper. The motivation behind this work is to enlarge the class of existing large-scale nonlinear dynamical systems to include appended dynamics and to further relax existing assumptions. To this end, large-scale nonlinear systems transformable to the extended decentralized strict feedback form are considered. Each subsystem contains asymptotically stable appended dynamics and it is allowed to enter into the chain of integrators affinely via unknown nonlinearities. The interconnections are assumed to be bounded by nonlinear functions of the states. The uncertainties in the subsystem include both unknown parameters and unstructured dynamics. A novel robust adaptive controller is designed to achieve robust stability in the presence of unknown parameters and unstructured dynamics. It is shown that global asymptotic regulation of partial states and global uniform boundedness of the remaining states are guaranteed utilizing partial state feedback. An illustrative example is provided to demonstrate the proposed control design methodology.

Original languageEnglish (US)
Title of host publicationProceedings of the IEEE Conference on Decision and Control
PublisherIEEE
Pages3289-3294
Number of pages6
Volume4
StatePublished - 1999
EventThe 38th IEEE Conference on Decision and Control (CDC) - Phoenix, AZ, USA
Duration: Dec 7 1999Dec 10 1999

Other

OtherThe 38th IEEE Conference on Decision and Control (CDC)
CityPhoenix, AZ, USA
Period12/7/9912/10/99

Fingerprint

Decentralized control
Robust control
Nonlinear systems
Nonlinear dynamical systems
State feedback
Feedback
Controllers

ASJC Scopus subject areas

  • Chemical Health and Safety
  • Control and Systems Engineering
  • Safety, Risk, Reliability and Quality

Cite this

Wang, Z., Khorrami, F., & Jiang, Z-P. (1999). Decentralized robust control for a class of large-scale nonlinear systems. In Proceedings of the IEEE Conference on Decision and Control (Vol. 4, pp. 3289-3294). IEEE.

Decentralized robust control for a class of large-scale nonlinear systems. / Wang, Zhi; Khorrami, Farshad; Jiang, Zhong-Ping.

Proceedings of the IEEE Conference on Decision and Control. Vol. 4 IEEE, 1999. p. 3289-3294.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Wang, Z, Khorrami, F & Jiang, Z-P 1999, Decentralized robust control for a class of large-scale nonlinear systems. in Proceedings of the IEEE Conference on Decision and Control. vol. 4, IEEE, pp. 3289-3294, The 38th IEEE Conference on Decision and Control (CDC), Phoenix, AZ, USA, 12/7/99.
Wang Z, Khorrami F, Jiang Z-P. Decentralized robust control for a class of large-scale nonlinear systems. In Proceedings of the IEEE Conference on Decision and Control. Vol. 4. IEEE. 1999. p. 3289-3294
Wang, Zhi ; Khorrami, Farshad ; Jiang, Zhong-Ping. / Decentralized robust control for a class of large-scale nonlinear systems. Proceedings of the IEEE Conference on Decision and Control. Vol. 4 IEEE, 1999. pp. 3289-3294
@inproceedings{1910d5f78f904074bbc4dcd91ca5b611,
title = "Decentralized robust control for a class of large-scale nonlinear systems",
abstract = "Decentralized robust control for a class of large-scale nonlinear systems with strong nonlinear interconnections is considered in this paper. The motivation behind this work is to enlarge the class of existing large-scale nonlinear dynamical systems to include appended dynamics and to further relax existing assumptions. To this end, large-scale nonlinear systems transformable to the extended decentralized strict feedback form are considered. Each subsystem contains asymptotically stable appended dynamics and it is allowed to enter into the chain of integrators affinely via unknown nonlinearities. The interconnections are assumed to be bounded by nonlinear functions of the states. The uncertainties in the subsystem include both unknown parameters and unstructured dynamics. A novel robust adaptive controller is designed to achieve robust stability in the presence of unknown parameters and unstructured dynamics. It is shown that global asymptotic regulation of partial states and global uniform boundedness of the remaining states are guaranteed utilizing partial state feedback. An illustrative example is provided to demonstrate the proposed control design methodology.",
author = "Zhi Wang and Farshad Khorrami and Zhong-Ping Jiang",
year = "1999",
language = "English (US)",
volume = "4",
pages = "3289--3294",
booktitle = "Proceedings of the IEEE Conference on Decision and Control",
publisher = "IEEE",

}

TY - GEN

T1 - Decentralized robust control for a class of large-scale nonlinear systems

AU - Wang, Zhi

AU - Khorrami, Farshad

AU - Jiang, Zhong-Ping

PY - 1999

Y1 - 1999

N2 - Decentralized robust control for a class of large-scale nonlinear systems with strong nonlinear interconnections is considered in this paper. The motivation behind this work is to enlarge the class of existing large-scale nonlinear dynamical systems to include appended dynamics and to further relax existing assumptions. To this end, large-scale nonlinear systems transformable to the extended decentralized strict feedback form are considered. Each subsystem contains asymptotically stable appended dynamics and it is allowed to enter into the chain of integrators affinely via unknown nonlinearities. The interconnections are assumed to be bounded by nonlinear functions of the states. The uncertainties in the subsystem include both unknown parameters and unstructured dynamics. A novel robust adaptive controller is designed to achieve robust stability in the presence of unknown parameters and unstructured dynamics. It is shown that global asymptotic regulation of partial states and global uniform boundedness of the remaining states are guaranteed utilizing partial state feedback. An illustrative example is provided to demonstrate the proposed control design methodology.

AB - Decentralized robust control for a class of large-scale nonlinear systems with strong nonlinear interconnections is considered in this paper. The motivation behind this work is to enlarge the class of existing large-scale nonlinear dynamical systems to include appended dynamics and to further relax existing assumptions. To this end, large-scale nonlinear systems transformable to the extended decentralized strict feedback form are considered. Each subsystem contains asymptotically stable appended dynamics and it is allowed to enter into the chain of integrators affinely via unknown nonlinearities. The interconnections are assumed to be bounded by nonlinear functions of the states. The uncertainties in the subsystem include both unknown parameters and unstructured dynamics. A novel robust adaptive controller is designed to achieve robust stability in the presence of unknown parameters and unstructured dynamics. It is shown that global asymptotic regulation of partial states and global uniform boundedness of the remaining states are guaranteed utilizing partial state feedback. An illustrative example is provided to demonstrate the proposed control design methodology.

UR - http://www.scopus.com/inward/record.url?scp=0033331626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033331626&partnerID=8YFLogxK

M3 - Conference contribution

VL - 4

SP - 3289

EP - 3294

BT - Proceedings of the IEEE Conference on Decision and Control

PB - IEEE

ER -