Correlations in nonequilibrium steady states of random halves models

Kevin K. Lin, Lai-Sang Young

Research output: Contribution to journalArticle

Abstract

We present the results of a detailed study of energy correlations at steady state for a 1-D model of coupled energy and matter transport. Our aim is to discover-via theoretical arguments, conjectures, and numerical simulations-how spatial covariances scale with system size, their relations to local thermodynamic quantities, and the randomizing effects of heat baths. Among our findings are that short-range covariances respond quadratically to local temperature gradients, and long-range covariances decay linearly with macroscopic distance. These findings are consistent with exact results for the simple exclusion and KMP models.

Original languageEnglish (US)
Pages (from-to)607-639
Number of pages33
JournalJournal of Statistical Physics
Volume128
Issue number3
DOIs
StatePublished - Aug 2007

Fingerprint

Nonequilibrium Steady State
Heat Bath
Exact Results
Energy
exclusion
Range of data
baths
temperature gradients
Thermodynamics
Linearly
Model
Decay
Gradient
Numerical Simulation
heat
thermodynamics
energy
decay
simulation

Keywords

  • Covariance
  • Heat baths
  • Nonequilibrium
  • Temperature gradient

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Statistical and Nonlinear Physics
  • Mathematical Physics

Cite this

Correlations in nonequilibrium steady states of random halves models. / Lin, Kevin K.; Young, Lai-Sang.

In: Journal of Statistical Physics, Vol. 128, No. 3, 08.2007, p. 607-639.

Research output: Contribution to journalArticle

@article{3641fd2db5414b529efbbdf076eebbf9,
title = "Correlations in nonequilibrium steady states of random halves models",
abstract = "We present the results of a detailed study of energy correlations at steady state for a 1-D model of coupled energy and matter transport. Our aim is to discover-via theoretical arguments, conjectures, and numerical simulations-how spatial covariances scale with system size, their relations to local thermodynamic quantities, and the randomizing effects of heat baths. Among our findings are that short-range covariances respond quadratically to local temperature gradients, and long-range covariances decay linearly with macroscopic distance. These findings are consistent with exact results for the simple exclusion and KMP models.",
keywords = "Covariance, Heat baths, Nonequilibrium, Temperature gradient",
author = "Lin, {Kevin K.} and Lai-Sang Young",
year = "2007",
month = "8",
doi = "10.1007/s10955-007-9318-9",
language = "English (US)",
volume = "128",
pages = "607--639",
journal = "Journal of Statistical Physics",
issn = "0022-4715",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Correlations in nonequilibrium steady states of random halves models

AU - Lin, Kevin K.

AU - Young, Lai-Sang

PY - 2007/8

Y1 - 2007/8

N2 - We present the results of a detailed study of energy correlations at steady state for a 1-D model of coupled energy and matter transport. Our aim is to discover-via theoretical arguments, conjectures, and numerical simulations-how spatial covariances scale with system size, their relations to local thermodynamic quantities, and the randomizing effects of heat baths. Among our findings are that short-range covariances respond quadratically to local temperature gradients, and long-range covariances decay linearly with macroscopic distance. These findings are consistent with exact results for the simple exclusion and KMP models.

AB - We present the results of a detailed study of energy correlations at steady state for a 1-D model of coupled energy and matter transport. Our aim is to discover-via theoretical arguments, conjectures, and numerical simulations-how spatial covariances scale with system size, their relations to local thermodynamic quantities, and the randomizing effects of heat baths. Among our findings are that short-range covariances respond quadratically to local temperature gradients, and long-range covariances decay linearly with macroscopic distance. These findings are consistent with exact results for the simple exclusion and KMP models.

KW - Covariance

KW - Heat baths

KW - Nonequilibrium

KW - Temperature gradient

UR - http://www.scopus.com/inward/record.url?scp=34547490296&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34547490296&partnerID=8YFLogxK

U2 - 10.1007/s10955-007-9318-9

DO - 10.1007/s10955-007-9318-9

M3 - Article

VL - 128

SP - 607

EP - 639

JO - Journal of Statistical Physics

JF - Journal of Statistical Physics

SN - 0022-4715

IS - 3

ER -