Controlled orientation of polyconjugated guest molecules in tunable host cavities

Airon C. Soegiarto, Angiolina Comotti, Michael Ward

Research output: Contribution to journalArticle

Abstract

Linear conjugated guest molecules with high aspect ratios form inclusion compounds with guanidinium organodisulfonate (GDS) host frameworks in which organodisulfonate "pillars" connect opposing GS sheets to generate lamellar architectures that reflect templating by the guest. Through judicious selection of pillars having adjustable lengths (lS-S, as measured by the separation between distal sulfur atoms) and guests of various lengths (lg), the framework architecture can be controlled systematically in a manner that enables regulation of the guest orientation and aggregation in the host framework. Inclusion compounds for which lg/lS-S ≤ 0.9 exhibit a bilayer architecture with 1-D channels containing guests oriented parallel to the long axis of the pillar. Guests with values of l g comparable to lS-S, however, promote the formation of a brick architecture in which the guests and the pillar are arranged in a herringbone motif. Surprisingly, longer guests (lg = 1.25l S-S) favor the formation of the bilayer architecture despite their larger volume because the guests are forced to align end-to-end as single-file arrays due to the vertical constraints of the 1-D channels. Bithiophene and biphenyl guests (lg < lS-S) are exceptional, promoting bilayer structures in which turnstile rotations of the pillars afford an unusual motif in which the guests are isolated from one another. The ability to synthesize a large family of compounds based on a common supramolecular building block (the GS sheet) permits construction of a structural "phase diagram" based on two simple molecular parameters, lg and l S-S, that can be used to sort the inclusion compounds according to their framework architectures and enable prediction of crystal structures for new host-guest combinations. The effects of these different framework architectures and packing motifs is manifested as bathochromic shifts in the absorption and emission spectra of the guests compared with their spectra in methanol solutions. This behavior is supported by ab initio TDDFT calculations that reproduce the bathochromic shifts associated with the effects of guest-guest and guest-host interactions, combined with conformational constraints imposed on the guest molecules by the rigid host framework.

Original languageEnglish (US)
Pages (from-to)14603-14616
Number of pages14
JournalJournal of the American Chemical Society
Volume132
Issue number41
DOIs
StatePublished - Oct 20 2010

Fingerprint

Guanidine
Sulfur
Methanol
Molecules
Brick
Phase diagrams
Aspect ratio
Agglomeration
Crystal structure
Atoms
diphenyl

ASJC Scopus subject areas

  • Chemistry(all)
  • Catalysis
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

Controlled orientation of polyconjugated guest molecules in tunable host cavities. / Soegiarto, Airon C.; Comotti, Angiolina; Ward, Michael.

In: Journal of the American Chemical Society, Vol. 132, No. 41, 20.10.2010, p. 14603-14616.

Research output: Contribution to journalArticle

Soegiarto, Airon C. ; Comotti, Angiolina ; Ward, Michael. / Controlled orientation of polyconjugated guest molecules in tunable host cavities. In: Journal of the American Chemical Society. 2010 ; Vol. 132, No. 41. pp. 14603-14616.
@article{90cd414f3fb2429283e81e58318b0332,
title = "Controlled orientation of polyconjugated guest molecules in tunable host cavities",
abstract = "Linear conjugated guest molecules with high aspect ratios form inclusion compounds with guanidinium organodisulfonate (GDS) host frameworks in which organodisulfonate {"}pillars{"} connect opposing GS sheets to generate lamellar architectures that reflect templating by the guest. Through judicious selection of pillars having adjustable lengths (lS-S, as measured by the separation between distal sulfur atoms) and guests of various lengths (lg), the framework architecture can be controlled systematically in a manner that enables regulation of the guest orientation and aggregation in the host framework. Inclusion compounds for which lg/lS-S ≤ 0.9 exhibit a bilayer architecture with 1-D channels containing guests oriented parallel to the long axis of the pillar. Guests with values of l g comparable to lS-S, however, promote the formation of a brick architecture in which the guests and the pillar are arranged in a herringbone motif. Surprisingly, longer guests (lg = 1.25l S-S) favor the formation of the bilayer architecture despite their larger volume because the guests are forced to align end-to-end as single-file arrays due to the vertical constraints of the 1-D channels. Bithiophene and biphenyl guests (lg < lS-S) are exceptional, promoting bilayer structures in which turnstile rotations of the pillars afford an unusual motif in which the guests are isolated from one another. The ability to synthesize a large family of compounds based on a common supramolecular building block (the GS sheet) permits construction of a structural {"}phase diagram{"} based on two simple molecular parameters, lg and l S-S, that can be used to sort the inclusion compounds according to their framework architectures and enable prediction of crystal structures for new host-guest combinations. The effects of these different framework architectures and packing motifs is manifested as bathochromic shifts in the absorption and emission spectra of the guests compared with their spectra in methanol solutions. This behavior is supported by ab initio TDDFT calculations that reproduce the bathochromic shifts associated with the effects of guest-guest and guest-host interactions, combined with conformational constraints imposed on the guest molecules by the rigid host framework.",
author = "Soegiarto, {Airon C.} and Angiolina Comotti and Michael Ward",
year = "2010",
month = "10",
day = "20",
doi = "10.1021/ja106106d",
language = "English (US)",
volume = "132",
pages = "14603--14616",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "41",

}

TY - JOUR

T1 - Controlled orientation of polyconjugated guest molecules in tunable host cavities

AU - Soegiarto, Airon C.

AU - Comotti, Angiolina

AU - Ward, Michael

PY - 2010/10/20

Y1 - 2010/10/20

N2 - Linear conjugated guest molecules with high aspect ratios form inclusion compounds with guanidinium organodisulfonate (GDS) host frameworks in which organodisulfonate "pillars" connect opposing GS sheets to generate lamellar architectures that reflect templating by the guest. Through judicious selection of pillars having adjustable lengths (lS-S, as measured by the separation between distal sulfur atoms) and guests of various lengths (lg), the framework architecture can be controlled systematically in a manner that enables regulation of the guest orientation and aggregation in the host framework. Inclusion compounds for which lg/lS-S ≤ 0.9 exhibit a bilayer architecture with 1-D channels containing guests oriented parallel to the long axis of the pillar. Guests with values of l g comparable to lS-S, however, promote the formation of a brick architecture in which the guests and the pillar are arranged in a herringbone motif. Surprisingly, longer guests (lg = 1.25l S-S) favor the formation of the bilayer architecture despite their larger volume because the guests are forced to align end-to-end as single-file arrays due to the vertical constraints of the 1-D channels. Bithiophene and biphenyl guests (lg < lS-S) are exceptional, promoting bilayer structures in which turnstile rotations of the pillars afford an unusual motif in which the guests are isolated from one another. The ability to synthesize a large family of compounds based on a common supramolecular building block (the GS sheet) permits construction of a structural "phase diagram" based on two simple molecular parameters, lg and l S-S, that can be used to sort the inclusion compounds according to their framework architectures and enable prediction of crystal structures for new host-guest combinations. The effects of these different framework architectures and packing motifs is manifested as bathochromic shifts in the absorption and emission spectra of the guests compared with their spectra in methanol solutions. This behavior is supported by ab initio TDDFT calculations that reproduce the bathochromic shifts associated with the effects of guest-guest and guest-host interactions, combined with conformational constraints imposed on the guest molecules by the rigid host framework.

AB - Linear conjugated guest molecules with high aspect ratios form inclusion compounds with guanidinium organodisulfonate (GDS) host frameworks in which organodisulfonate "pillars" connect opposing GS sheets to generate lamellar architectures that reflect templating by the guest. Through judicious selection of pillars having adjustable lengths (lS-S, as measured by the separation between distal sulfur atoms) and guests of various lengths (lg), the framework architecture can be controlled systematically in a manner that enables regulation of the guest orientation and aggregation in the host framework. Inclusion compounds for which lg/lS-S ≤ 0.9 exhibit a bilayer architecture with 1-D channels containing guests oriented parallel to the long axis of the pillar. Guests with values of l g comparable to lS-S, however, promote the formation of a brick architecture in which the guests and the pillar are arranged in a herringbone motif. Surprisingly, longer guests (lg = 1.25l S-S) favor the formation of the bilayer architecture despite their larger volume because the guests are forced to align end-to-end as single-file arrays due to the vertical constraints of the 1-D channels. Bithiophene and biphenyl guests (lg < lS-S) are exceptional, promoting bilayer structures in which turnstile rotations of the pillars afford an unusual motif in which the guests are isolated from one another. The ability to synthesize a large family of compounds based on a common supramolecular building block (the GS sheet) permits construction of a structural "phase diagram" based on two simple molecular parameters, lg and l S-S, that can be used to sort the inclusion compounds according to their framework architectures and enable prediction of crystal structures for new host-guest combinations. The effects of these different framework architectures and packing motifs is manifested as bathochromic shifts in the absorption and emission spectra of the guests compared with their spectra in methanol solutions. This behavior is supported by ab initio TDDFT calculations that reproduce the bathochromic shifts associated with the effects of guest-guest and guest-host interactions, combined with conformational constraints imposed on the guest molecules by the rigid host framework.

UR - http://www.scopus.com/inward/record.url?scp=77958030553&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77958030553&partnerID=8YFLogxK

U2 - 10.1021/ja106106d

DO - 10.1021/ja106106d

M3 - Article

VL - 132

SP - 14603

EP - 14616

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 41

ER -