Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations

Peter Constantin, Igor Kukavica, Vlad Vicol

Research output: Contribution to journalArticle

Abstract

We consider the incompressible Euler equations on Rd or Td, where d∈{2,3}. We prove that: (a) In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius). (b) In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces, e.g. Gevrey-class regularity in the label a1 and Sobolev regularity in the labels a2,…,ad. (c) In Eulerian coordinates both results (a) and (b) above are false.

Original languageEnglish (US)
Pages (from-to)1569-1588
Number of pages20
JournalAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
Volume33
Issue number6
DOIs
StatePublished - Nov 1 2016

Fingerprint

Lagrangian Coordinates
Gevrey Classes
Regularity Properties
Euler equations
Euler Equations
Labels
Regularity
Radius
Incompressible Euler Equations
Analyticity
False

Keywords

  • Analyticity
  • Euler equations
  • Gevrey class
  • Lagrangian and Eulerian coordinates

ASJC Scopus subject areas

  • Analysis
  • Mathematical Physics

Cite this

Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations. / Constantin, Peter; Kukavica, Igor; Vicol, Vlad.

In: Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, Vol. 33, No. 6, 01.11.2016, p. 1569-1588.

Research output: Contribution to journalArticle

@article{1e3267c937af47aa9a565bc3deb33b53,
title = "Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations",
abstract = "We consider the incompressible Euler equations on Rd or Td, where d∈{2,3}. We prove that: (a) In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius). (b) In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces, e.g. Gevrey-class regularity in the label a1 and Sobolev regularity in the labels a2,…,ad. (c) In Eulerian coordinates both results (a) and (b) above are false.",
keywords = "Analyticity, Euler equations, Gevrey class, Lagrangian and Eulerian coordinates",
author = "Peter Constantin and Igor Kukavica and Vlad Vicol",
year = "2016",
month = "11",
day = "1",
doi = "10.1016/j.anihpc.2015.07.002",
language = "English (US)",
volume = "33",
pages = "1569--1588",
journal = "Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis",
issn = "0294-1449",
publisher = "Elsevier Masson SAS",
number = "6",

}

TY - JOUR

T1 - Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations

AU - Constantin, Peter

AU - Kukavica, Igor

AU - Vicol, Vlad

PY - 2016/11/1

Y1 - 2016/11/1

N2 - We consider the incompressible Euler equations on Rd or Td, where d∈{2,3}. We prove that: (a) In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius). (b) In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces, e.g. Gevrey-class regularity in the label a1 and Sobolev regularity in the labels a2,…,ad. (c) In Eulerian coordinates both results (a) and (b) above are false.

AB - We consider the incompressible Euler equations on Rd or Td, where d∈{2,3}. We prove that: (a) In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius). (b) In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces, e.g. Gevrey-class regularity in the label a1 and Sobolev regularity in the labels a2,…,ad. (c) In Eulerian coordinates both results (a) and (b) above are false.

KW - Analyticity

KW - Euler equations

KW - Gevrey class

KW - Lagrangian and Eulerian coordinates

UR - http://www.scopus.com/inward/record.url?scp=84939833029&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84939833029&partnerID=8YFLogxK

U2 - 10.1016/j.anihpc.2015.07.002

DO - 10.1016/j.anihpc.2015.07.002

M3 - Article

AN - SCOPUS:84939833029

VL - 33

SP - 1569

EP - 1588

JO - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis

JF - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis

SN - 0294-1449

IS - 6

ER -