Constructing and Characterising Solar Structure Models for Computational Helioseismology

H. Schunker, R. H. Cameron, Laurent Gizon, H. Moradi

Research output: Contribution to journalArticle

Abstract

In local helioseismology, numerical simulations of wave propagation are useful to model the interaction of solar waves with perturbations to a background solar model. However, the solution to the linearised equations of motion include convective modes that can swamp the helioseismic waves that we are interested in. In this article, we construct background solar models that are stable against convection, by modifying the vertical pressure gradient of Model S (Christensen-Dalsgaard et al., 1996, Science272, 1286) relinquishing hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that we wish to remain as close to Model S as possible. In a bid to recover the Model S eigenmodes, we choose to make additional corrections to the sound speed of Model S before stabilisation. No stabilised model can be perfectly solar-like, so we present three stabilised models with slightly different eigenmodes. The models are appropriate to study the f and p1 to p4 modes with spherical harmonic degrees in the range from 400 to 900. Background model CSM has a modified pressure gradient for stabilisation and has eigenfrequencies within 2% of Model S. Model CSM_A has an additional 10% increase in sound speed in the top 1 Mm resulting in eigenfrequencies within 2% of Model S and eigenfunctions that are, in comparison with CSM, closest to those of Model S. Model CSM_B has a 3% decrease in sound speed in the top 5 Mm resulting in eigenfrequencies within 1% of Model S and eigenfunctions that are only marginally adversely affected. These models are useful to study the interaction of solar waves with embedded three-dimensional heterogeneities, such as convective flows and model sunspots. We have also calculated the response of the stabilised models to excitation by random near-surface sources, using simulations of the propagation of linear waves. We find that the simulated power spectra of wave motion are in good agreement with an observed SOHO/MDI power spectrum. Overall, our convectively stabilised background models provide a good basis for quantitative numerical local helioseismology. The models are available for download from http://www.mps.mpg.de/projects/seismo/NA4/.

Original languageEnglish (US)
Pages (from-to)1-26
Number of pages26
JournalSolar Physics
Volume271
Issue number1
DOIs
StatePublished - Jul 1 2011

Fingerprint

helioseismology
command service modules
stabilization
pressure gradients
pressure gradient
acoustics
power spectra
eigenvectors

Keywords

  • Helioseismology
  • Numerical methods
  • Solar models

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Constructing and Characterising Solar Structure Models for Computational Helioseismology. / Schunker, H.; Cameron, R. H.; Gizon, Laurent; Moradi, H.

In: Solar Physics, Vol. 271, No. 1, 01.07.2011, p. 1-26.

Research output: Contribution to journalArticle

Schunker, H. ; Cameron, R. H. ; Gizon, Laurent ; Moradi, H. / Constructing and Characterising Solar Structure Models for Computational Helioseismology. In: Solar Physics. 2011 ; Vol. 271, No. 1. pp. 1-26.
@article{8ac75385045a43debdc319462f1ae9cf,
title = "Constructing and Characterising Solar Structure Models for Computational Helioseismology",
abstract = "In local helioseismology, numerical simulations of wave propagation are useful to model the interaction of solar waves with perturbations to a background solar model. However, the solution to the linearised equations of motion include convective modes that can swamp the helioseismic waves that we are interested in. In this article, we construct background solar models that are stable against convection, by modifying the vertical pressure gradient of Model S (Christensen-Dalsgaard et al., 1996, Science272, 1286) relinquishing hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that we wish to remain as close to Model S as possible. In a bid to recover the Model S eigenmodes, we choose to make additional corrections to the sound speed of Model S before stabilisation. No stabilised model can be perfectly solar-like, so we present three stabilised models with slightly different eigenmodes. The models are appropriate to study the f and p1 to p4 modes with spherical harmonic degrees in the range from 400 to 900. Background model CSM has a modified pressure gradient for stabilisation and has eigenfrequencies within 2{\%} of Model S. Model CSM_A has an additional 10{\%} increase in sound speed in the top 1 Mm resulting in eigenfrequencies within 2{\%} of Model S and eigenfunctions that are, in comparison with CSM, closest to those of Model S. Model CSM_B has a 3{\%} decrease in sound speed in the top 5 Mm resulting in eigenfrequencies within 1{\%} of Model S and eigenfunctions that are only marginally adversely affected. These models are useful to study the interaction of solar waves with embedded three-dimensional heterogeneities, such as convective flows and model sunspots. We have also calculated the response of the stabilised models to excitation by random near-surface sources, using simulations of the propagation of linear waves. We find that the simulated power spectra of wave motion are in good agreement with an observed SOHO/MDI power spectrum. Overall, our convectively stabilised background models provide a good basis for quantitative numerical local helioseismology. The models are available for download from http://www.mps.mpg.de/projects/seismo/NA4/.",
keywords = "Helioseismology, Numerical methods, Solar models",
author = "H. Schunker and Cameron, {R. H.} and Laurent Gizon and H. Moradi",
year = "2011",
month = "7",
day = "1",
doi = "10.1007/s11207-011-9790-x",
language = "English (US)",
volume = "271",
pages = "1--26",
journal = "Solar Physics",
issn = "0038-0938",
publisher = "Springer Netherlands",
number = "1",

}

TY - JOUR

T1 - Constructing and Characterising Solar Structure Models for Computational Helioseismology

AU - Schunker, H.

AU - Cameron, R. H.

AU - Gizon, Laurent

AU - Moradi, H.

PY - 2011/7/1

Y1 - 2011/7/1

N2 - In local helioseismology, numerical simulations of wave propagation are useful to model the interaction of solar waves with perturbations to a background solar model. However, the solution to the linearised equations of motion include convective modes that can swamp the helioseismic waves that we are interested in. In this article, we construct background solar models that are stable against convection, by modifying the vertical pressure gradient of Model S (Christensen-Dalsgaard et al., 1996, Science272, 1286) relinquishing hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that we wish to remain as close to Model S as possible. In a bid to recover the Model S eigenmodes, we choose to make additional corrections to the sound speed of Model S before stabilisation. No stabilised model can be perfectly solar-like, so we present three stabilised models with slightly different eigenmodes. The models are appropriate to study the f and p1 to p4 modes with spherical harmonic degrees in the range from 400 to 900. Background model CSM has a modified pressure gradient for stabilisation and has eigenfrequencies within 2% of Model S. Model CSM_A has an additional 10% increase in sound speed in the top 1 Mm resulting in eigenfrequencies within 2% of Model S and eigenfunctions that are, in comparison with CSM, closest to those of Model S. Model CSM_B has a 3% decrease in sound speed in the top 5 Mm resulting in eigenfrequencies within 1% of Model S and eigenfunctions that are only marginally adversely affected. These models are useful to study the interaction of solar waves with embedded three-dimensional heterogeneities, such as convective flows and model sunspots. We have also calculated the response of the stabilised models to excitation by random near-surface sources, using simulations of the propagation of linear waves. We find that the simulated power spectra of wave motion are in good agreement with an observed SOHO/MDI power spectrum. Overall, our convectively stabilised background models provide a good basis for quantitative numerical local helioseismology. The models are available for download from http://www.mps.mpg.de/projects/seismo/NA4/.

AB - In local helioseismology, numerical simulations of wave propagation are useful to model the interaction of solar waves with perturbations to a background solar model. However, the solution to the linearised equations of motion include convective modes that can swamp the helioseismic waves that we are interested in. In this article, we construct background solar models that are stable against convection, by modifying the vertical pressure gradient of Model S (Christensen-Dalsgaard et al., 1996, Science272, 1286) relinquishing hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that we wish to remain as close to Model S as possible. In a bid to recover the Model S eigenmodes, we choose to make additional corrections to the sound speed of Model S before stabilisation. No stabilised model can be perfectly solar-like, so we present three stabilised models with slightly different eigenmodes. The models are appropriate to study the f and p1 to p4 modes with spherical harmonic degrees in the range from 400 to 900. Background model CSM has a modified pressure gradient for stabilisation and has eigenfrequencies within 2% of Model S. Model CSM_A has an additional 10% increase in sound speed in the top 1 Mm resulting in eigenfrequencies within 2% of Model S and eigenfunctions that are, in comparison with CSM, closest to those of Model S. Model CSM_B has a 3% decrease in sound speed in the top 5 Mm resulting in eigenfrequencies within 1% of Model S and eigenfunctions that are only marginally adversely affected. These models are useful to study the interaction of solar waves with embedded three-dimensional heterogeneities, such as convective flows and model sunspots. We have also calculated the response of the stabilised models to excitation by random near-surface sources, using simulations of the propagation of linear waves. We find that the simulated power spectra of wave motion are in good agreement with an observed SOHO/MDI power spectrum. Overall, our convectively stabilised background models provide a good basis for quantitative numerical local helioseismology. The models are available for download from http://www.mps.mpg.de/projects/seismo/NA4/.

KW - Helioseismology

KW - Numerical methods

KW - Solar models

UR - http://www.scopus.com/inward/record.url?scp=79958271744&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79958271744&partnerID=8YFLogxK

U2 - 10.1007/s11207-011-9790-x

DO - 10.1007/s11207-011-9790-x

M3 - Article

VL - 271

SP - 1

EP - 26

JO - Solar Physics

JF - Solar Physics

SN - 0038-0938

IS - 1

ER -