Conformations of complexes derived from the interactions of two stereoisomeric bay-region 5-methylchrysene diol epoxides with DNA.

M. H. Kim, C. J. Roche, Nicholas Geacintov, M. Pope, J. Pataki, R. G. Harvey

Research output: Contribution to journalArticle

Abstract

The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M-1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6 +/- 1%) of DE-I than of DE-II (2-3%) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52 degrees with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE.(ABSTRACT TRUNCATED AT 250 WORDS)

Original languageEnglish (US)
Pages (from-to)949-965
Number of pages17
JournalJournal of Biomolecular Structure and Dynamics
Volume3
Issue number5
StatePublished - Apr 1986

Fingerprint

Epoxy Compounds
DNA
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
Benzo(a)pyrene
Oxides
Fluorescence
Phosphates
5-methylchrysene

ASJC Scopus subject areas

  • Molecular Biology

Cite this

Conformations of complexes derived from the interactions of two stereoisomeric bay-region 5-methylchrysene diol epoxides with DNA. / Kim, M. H.; Roche, C. J.; Geacintov, Nicholas; Pope, M.; Pataki, J.; Harvey, R. G.

In: Journal of Biomolecular Structure and Dynamics, Vol. 3, No. 5, 04.1986, p. 949-965.

Research output: Contribution to journalArticle

@article{4015c310c9a240a584dbf36154d0dbee,
title = "Conformations of complexes derived from the interactions of two stereoisomeric bay-region 5-methylchrysene diol epoxides with DNA.",
abstract = "The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M-1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6 +/- 1{\%}) of DE-I than of DE-II (2-3{\%}) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52 degrees with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE.(ABSTRACT TRUNCATED AT 250 WORDS)",
author = "Kim, {M. H.} and Roche, {C. J.} and Nicholas Geacintov and M. Pope and J. Pataki and Harvey, {R. G.}",
year = "1986",
month = "4",
language = "English (US)",
volume = "3",
pages = "949--965",
journal = "Journal of Biomolecular Structure and Dynamics",
issn = "0739-1102",
publisher = "Adenine Press",
number = "5",

}

TY - JOUR

T1 - Conformations of complexes derived from the interactions of two stereoisomeric bay-region 5-methylchrysene diol epoxides with DNA.

AU - Kim, M. H.

AU - Roche, C. J.

AU - Geacintov, Nicholas

AU - Pope, M.

AU - Pataki, J.

AU - Harvey, R. G.

PY - 1986/4

Y1 - 1986/4

N2 - The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M-1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6 +/- 1%) of DE-I than of DE-II (2-3%) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52 degrees with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE.(ABSTRACT TRUNCATED AT 250 WORDS)

AB - The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M-1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6 +/- 1%) of DE-I than of DE-II (2-3%) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52 degrees with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE.(ABSTRACT TRUNCATED AT 250 WORDS)

UR - http://www.scopus.com/inward/record.url?scp=0022691660&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022691660&partnerID=8YFLogxK

M3 - Article

VL - 3

SP - 949

EP - 965

JO - Journal of Biomolecular Structure and Dynamics

JF - Journal of Biomolecular Structure and Dynamics

SN - 0739-1102

IS - 5

ER -