Concurrent temporal channels for auditory processing

Oscillatory neural entrainment reveals segregation of function at different scales

Xiangbin Teng, Xing Tian, Jess Rowland, David Poeppel

Research output: Contribution to journalArticle

Abstract

Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4-7 Hz) and gamma band ranges (31-45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8-12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations.

Original languageEnglish (US)
Pages (from-to)e2000812
JournalPLoS Biology
Volume15
Issue number11
DOIs
StatePublished - Nov 1 2017

Fingerprint

Modulation
Acoustics
acoustics
Processing
Auditory Perception
Magnetoencephalography
Cochlea
Acoustic waves
Sampling
sampling
magnetoencephalography

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Concurrent temporal channels for auditory processing : Oscillatory neural entrainment reveals segregation of function at different scales. / Teng, Xiangbin; Tian, Xing; Rowland, Jess; Poeppel, David.

In: PLoS Biology, Vol. 15, No. 11, 01.11.2017, p. e2000812.

Research output: Contribution to journalArticle

@article{e27b9388fbfe44bcbb51e1e5af58fc2c,
title = "Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales",
abstract = "Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4-7 Hz) and gamma band ranges (31-45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8-12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations.",
author = "Xiangbin Teng and Xing Tian and Jess Rowland and David Poeppel",
year = "2017",
month = "11",
day = "1",
doi = "10.1371/journal.pbio.2000812",
language = "English (US)",
volume = "15",
pages = "e2000812",
journal = "PLoS Biology",
issn = "1544-9173",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Concurrent temporal channels for auditory processing

T2 - Oscillatory neural entrainment reveals segregation of function at different scales

AU - Teng, Xiangbin

AU - Tian, Xing

AU - Rowland, Jess

AU - Poeppel, David

PY - 2017/11/1

Y1 - 2017/11/1

N2 - Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4-7 Hz) and gamma band ranges (31-45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8-12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations.

AB - Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4-7 Hz) and gamma band ranges (31-45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8-12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations.

UR - http://www.scopus.com/inward/record.url?scp=85033583444&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85033583444&partnerID=8YFLogxK

U2 - 10.1371/journal.pbio.2000812

DO - 10.1371/journal.pbio.2000812

M3 - Article

VL - 15

SP - e2000812

JO - PLoS Biology

JF - PLoS Biology

SN - 1544-9173

IS - 11

ER -