Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

E. Aprile, F. Agostini, M. Alfonsi, K. Arisaka, Francesco Arneodo, M. Auger, C. Balan, P. Barrow, L. Baudis, B. Bauermeister, A. Behrens, P. Beltrame, K. Bokeloh, A. Breskin, A. Brown, E. Brown, S. Bruenner, G. Bruno, R. Budnik, J. M.R. Cardoso & 71 others A. P. Colijn, H. Contreras, J. P. Cussonneau, M. P. Decowski, E. Duchovni, S. Fattori, A. D. Ferella, W. Fulgione, M. Garbini, C. Geis, L. W. Goetzke, C. Grignon, E. Gross, W. Hampel, R. Itay, F. Kaether, G. Kessler, A. Kish, H. Landsman, R. F. Lang, M. Le Calloch, D. Lellouch, L. Levinson, C. Levy, S. Lindemann, M. Lindner, J. A.M. Lopes, K. Lung, A. Lyashenko, S. Macmullin, T. Marrodán Undagoitia, J. Masbou, F. V. Massoli, D. Mayani Paras, A. J.Melgarejo Fernandez, Y. Meng, M. Messina, B. Miguez, A. Molinario, G. Morana, M. Murra, J. Naganoma, U. Oberlack, S. E.A. Orrigo, E. Pantic, R. Persiani, F. Piastra, J. Pienaar, G. Plante, N. Priel, S. Reichard, C. Reuter, A. Rizzo, S. Rosendahl, J. M.F.Dos Santos, G. Sartorelli, S. Schindler, J. Schreiner, M. Schumann, L. Scotto Lavina, M. Selvi, P. Shagin, H. Simgen, A. Teymourian, D. Thers, A. Tiseni, G. Trinchero, O. Vitells, H. Wang, M. Weber, C. Weinheimer

Research output: Contribution to journalArticle

Abstract

XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2·10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ∼ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.

Original languageEnglish (US)
Article numberP11006
JournalJournal of Instrumentation
Volume9
Issue number11
DOIs
StatePublished - Nov 1 2014

Fingerprint

Conceptual Design
Conceptual design
muons
Detector
Detectors
Water
Cherenkov Detectors
Time Projection Chamber
water
Experiment
Simulation
weakly interacting massive particles
simulation
Experiments
detectors
del operator
Dark Matter
Neutron
Photomultipliers
Xenon

Keywords

  • Cherenkov and transition radiation
  • Cherenkov detectors
  • Dark Matter detectors (WIMPs, axions, etc.)
  • Detector modelling and simulations I (interaction of radiation with matter
  • interaction of hadrons with matter, etc)
  • interaction of photons with matter

ASJC Scopus subject areas

  • Instrumentation
  • Mathematical Physics

Cite this

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment. / Aprile, E.; Agostini, F.; Alfonsi, M.; Arisaka, K.; Arneodo, Francesco; Auger, M.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Bokeloh, K.; Breskin, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Cardoso, J. M.R.; Colijn, A. P.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fulgione, W.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Calloch, M. Le; Lellouch, D.; Levinson, L.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J. A.M.; Lung, K.; Lyashenko, A.; Macmullin, S.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Paras, D. Mayani; Fernandez, A. J.Melgarejo; Meng, Y.; Messina, M.; Miguez, B.; Molinario, A.; Morana, G.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S. E.A.; Pantic, E.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Santos, J. M.F.Dos; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Vitells, O.; Wang, H.; Weber, M.; Weinheimer, C.

In: Journal of Instrumentation, Vol. 9, No. 11, P11006, 01.11.2014.

Research output: Contribution to journalArticle

Aprile, E, Agostini, F, Alfonsi, M, Arisaka, K, Arneodo, F, Auger, M, Balan, C, Barrow, P, Baudis, L, Bauermeister, B, Behrens, A, Beltrame, P, Bokeloh, K, Breskin, A, Brown, A, Brown, E, Bruenner, S, Bruno, G, Budnik, R, Cardoso, JMR, Colijn, AP, Contreras, H, Cussonneau, JP, Decowski, MP, Duchovni, E, Fattori, S, Ferella, AD, Fulgione, W, Garbini, M, Geis, C, Goetzke, LW, Grignon, C, Gross, E, Hampel, W, Itay, R, Kaether, F, Kessler, G, Kish, A, Landsman, H, Lang, RF, Calloch, ML, Lellouch, D, Levinson, L, Levy, C, Lindemann, S, Lindner, M, Lopes, JAM, Lung, K, Lyashenko, A, Macmullin, S, Undagoitia, TM, Masbou, J, Massoli, FV, Paras, DM, Fernandez, AJM, Meng, Y, Messina, M, Miguez, B, Molinario, A, Morana, G, Murra, M, Naganoma, J, Oberlack, U, Orrigo, SEA, Pantic, E, Persiani, R, Piastra, F, Pienaar, J, Plante, G, Priel, N, Reichard, S, Reuter, C, Rizzo, A, Rosendahl, S, Santos, JMFD, Sartorelli, G, Schindler, S, Schreiner, J, Schumann, M, Lavina, LS, Selvi, M, Shagin, P, Simgen, H, Teymourian, A, Thers, D, Tiseni, A, Trinchero, G, Vitells, O, Wang, H, Weber, M & Weinheimer, C 2014, 'Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment', Journal of Instrumentation, vol. 9, no. 11, P11006. https://doi.org/10.1088/1748-0221/9/11/P11006
Aprile, E. ; Agostini, F. ; Alfonsi, M. ; Arisaka, K. ; Arneodo, Francesco ; Auger, M. ; Balan, C. ; Barrow, P. ; Baudis, L. ; Bauermeister, B. ; Behrens, A. ; Beltrame, P. ; Bokeloh, K. ; Breskin, A. ; Brown, A. ; Brown, E. ; Bruenner, S. ; Bruno, G. ; Budnik, R. ; Cardoso, J. M.R. ; Colijn, A. P. ; Contreras, H. ; Cussonneau, J. P. ; Decowski, M. P. ; Duchovni, E. ; Fattori, S. ; Ferella, A. D. ; Fulgione, W. ; Garbini, M. ; Geis, C. ; Goetzke, L. W. ; Grignon, C. ; Gross, E. ; Hampel, W. ; Itay, R. ; Kaether, F. ; Kessler, G. ; Kish, A. ; Landsman, H. ; Lang, R. F. ; Calloch, M. Le ; Lellouch, D. ; Levinson, L. ; Levy, C. ; Lindemann, S. ; Lindner, M. ; Lopes, J. A.M. ; Lung, K. ; Lyashenko, A. ; Macmullin, S. ; Undagoitia, T. Marrodán ; Masbou, J. ; Massoli, F. V. ; Paras, D. Mayani ; Fernandez, A. J.Melgarejo ; Meng, Y. ; Messina, M. ; Miguez, B. ; Molinario, A. ; Morana, G. ; Murra, M. ; Naganoma, J. ; Oberlack, U. ; Orrigo, S. E.A. ; Pantic, E. ; Persiani, R. ; Piastra, F. ; Pienaar, J. ; Plante, G. ; Priel, N. ; Reichard, S. ; Reuter, C. ; Rizzo, A. ; Rosendahl, S. ; Santos, J. M.F.Dos ; Sartorelli, G. ; Schindler, S. ; Schreiner, J. ; Schumann, M. ; Lavina, L. Scotto ; Selvi, M. ; Shagin, P. ; Simgen, H. ; Teymourian, A. ; Thers, D. ; Tiseni, A. ; Trinchero, G. ; Vitells, O. ; Wang, H. ; Weber, M. ; Weinheimer, C. / Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment. In: Journal of Instrumentation. 2014 ; Vol. 9, No. 11.
@article{ca8aa95776a341d7ba96de26826f4935,
title = "Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment",
abstract = "XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2·10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ∼ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5{\%}) and showers of secondary particles from muon interactions in the rock (>70{\%}). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.",
keywords = "Cherenkov and transition radiation, Cherenkov detectors, Dark Matter detectors (WIMPs, axions, etc.), Detector modelling and simulations I (interaction of radiation with matter, interaction of hadrons with matter, etc), interaction of photons with matter",
author = "E. Aprile and F. Agostini and M. Alfonsi and K. Arisaka and Francesco Arneodo and M. Auger and C. Balan and P. Barrow and L. Baudis and B. Bauermeister and A. Behrens and P. Beltrame and K. Bokeloh and A. Breskin and A. Brown and E. Brown and S. Bruenner and G. Bruno and R. Budnik and Cardoso, {J. M.R.} and Colijn, {A. P.} and H. Contreras and Cussonneau, {J. P.} and Decowski, {M. P.} and E. Duchovni and S. Fattori and Ferella, {A. D.} and W. Fulgione and M. Garbini and C. Geis and Goetzke, {L. W.} and C. Grignon and E. Gross and W. Hampel and R. Itay and F. Kaether and G. Kessler and A. Kish and H. Landsman and Lang, {R. F.} and Calloch, {M. Le} and D. Lellouch and L. Levinson and C. Levy and S. Lindemann and M. Lindner and Lopes, {J. A.M.} and K. Lung and A. Lyashenko and S. Macmullin and Undagoitia, {T. Marrod{\'a}n} and J. Masbou and Massoli, {F. V.} and Paras, {D. Mayani} and Fernandez, {A. J.Melgarejo} and Y. Meng and M. Messina and B. Miguez and A. Molinario and G. Morana and M. Murra and J. Naganoma and U. Oberlack and Orrigo, {S. E.A.} and E. Pantic and R. Persiani and F. Piastra and J. Pienaar and G. Plante and N. Priel and S. Reichard and C. Reuter and A. Rizzo and S. Rosendahl and Santos, {J. M.F.Dos} and G. Sartorelli and S. Schindler and J. Schreiner and M. Schumann and Lavina, {L. Scotto} and M. Selvi and P. Shagin and H. Simgen and A. Teymourian and D. Thers and A. Tiseni and G. Trinchero and O. Vitells and H. Wang and M. Weber and C. Weinheimer",
year = "2014",
month = "11",
day = "1",
doi = "10.1088/1748-0221/9/11/P11006",
language = "English (US)",
volume = "9",
journal = "Journal of Instrumentation",
issn = "1748-0221",
publisher = "IOP Publishing Ltd.",
number = "11",

}

TY - JOUR

T1 - Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

AU - Aprile, E.

AU - Agostini, F.

AU - Alfonsi, M.

AU - Arisaka, K.

AU - Arneodo, Francesco

AU - Auger, M.

AU - Balan, C.

AU - Barrow, P.

AU - Baudis, L.

AU - Bauermeister, B.

AU - Behrens, A.

AU - Beltrame, P.

AU - Bokeloh, K.

AU - Breskin, A.

AU - Brown, A.

AU - Brown, E.

AU - Bruenner, S.

AU - Bruno, G.

AU - Budnik, R.

AU - Cardoso, J. M.R.

AU - Colijn, A. P.

AU - Contreras, H.

AU - Cussonneau, J. P.

AU - Decowski, M. P.

AU - Duchovni, E.

AU - Fattori, S.

AU - Ferella, A. D.

AU - Fulgione, W.

AU - Garbini, M.

AU - Geis, C.

AU - Goetzke, L. W.

AU - Grignon, C.

AU - Gross, E.

AU - Hampel, W.

AU - Itay, R.

AU - Kaether, F.

AU - Kessler, G.

AU - Kish, A.

AU - Landsman, H.

AU - Lang, R. F.

AU - Calloch, M. Le

AU - Lellouch, D.

AU - Levinson, L.

AU - Levy, C.

AU - Lindemann, S.

AU - Lindner, M.

AU - Lopes, J. A.M.

AU - Lung, K.

AU - Lyashenko, A.

AU - Macmullin, S.

AU - Undagoitia, T. Marrodán

AU - Masbou, J.

AU - Massoli, F. V.

AU - Paras, D. Mayani

AU - Fernandez, A. J.Melgarejo

AU - Meng, Y.

AU - Messina, M.

AU - Miguez, B.

AU - Molinario, A.

AU - Morana, G.

AU - Murra, M.

AU - Naganoma, J.

AU - Oberlack, U.

AU - Orrigo, S. E.A.

AU - Pantic, E.

AU - Persiani, R.

AU - Piastra, F.

AU - Pienaar, J.

AU - Plante, G.

AU - Priel, N.

AU - Reichard, S.

AU - Reuter, C.

AU - Rizzo, A.

AU - Rosendahl, S.

AU - Santos, J. M.F.Dos

AU - Sartorelli, G.

AU - Schindler, S.

AU - Schreiner, J.

AU - Schumann, M.

AU - Lavina, L. Scotto

AU - Selvi, M.

AU - Shagin, P.

AU - Simgen, H.

AU - Teymourian, A.

AU - Thers, D.

AU - Tiseni, A.

AU - Trinchero, G.

AU - Vitells, O.

AU - Wang, H.

AU - Weber, M.

AU - Weinheimer, C.

PY - 2014/11/1

Y1 - 2014/11/1

N2 - XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2·10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ∼ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.

AB - XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2·10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ∼ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.

KW - Cherenkov and transition radiation

KW - Cherenkov detectors

KW - Dark Matter detectors (WIMPs, axions, etc.)

KW - Detector modelling and simulations I (interaction of radiation with matter

KW - interaction of hadrons with matter, etc)

KW - interaction of photons with matter

UR - http://www.scopus.com/inward/record.url?scp=84914678803&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84914678803&partnerID=8YFLogxK

U2 - 10.1088/1748-0221/9/11/P11006

DO - 10.1088/1748-0221/9/11/P11006

M3 - Article

VL - 9

JO - Journal of Instrumentation

JF - Journal of Instrumentation

SN - 1748-0221

IS - 11

M1 - P11006

ER -