Concentrations in the one-dimensional Vlasov-Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case

Andrew J. Majda, George Majda, Yuxi Zheng

Research output: Contribution to journalArticle

Abstract

Weak and measure-valued solutions for the two-component Vlasov-Poisson equations in a single space dimension are proposed and studied here as a simpler analogue problem for the limiting behavior of approximations for the two-dimensional Euler equations with general vorticity of two signs. From numerical experiments and mathematical theory, it is known that much more complex behavior can occur in limiting processes for vortex sheets with general vorticity of two signs as compared with non-negative vorticity. Here such behavior is confirmed rigorously for the simpler analogue problem through explicit examples involving singular charge concentration. For the two-component Vlasov-Poisson equations, the concepts of measure-valued and weak solution are introduced. Explicit examples with charge concentration establish that the limit of weak solutions in a dynamic process is necessarily a measure-valued solution in some cases rather than the anticipated weak solution, i.e. no concentration-cancellation occurs. The limiting behavior of computational regularizations involving high resolution particle methods is presented here both for the instances with measure-valued solutions and also for new examples with non-unique weak solutions. The authors demonstrate that different computational regularizations can exhibit completely different limiting behavior in situations with measure-valued and/or non-unique weak solutions.

Original languageEnglish (US)
Pages (from-to)41-76
Number of pages36
JournalPhysica D: Nonlinear Phenomena
Volume79
Issue number1
DOIs
StatePublished - Dec 1 1994

Fingerprint

Vlasov-Poisson Equations
Measure-valued Solutions
Poisson equation
Weak Solution
Screening
screening
Limiting Behavior
Vorticity
vorticity
Regularization
Charge
Analogue
Vortex Sheet
Particle Method
Dynamic Process
Cancellation
analogs
Euler Equations
vortex sheets
Euler equations

ASJC Scopus subject areas

  • Applied Mathematics
  • Statistical and Nonlinear Physics

Cite this

@article{f76524347bb54f05870431a2aba598b6,
title = "Concentrations in the one-dimensional Vlasov-Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case",
abstract = "Weak and measure-valued solutions for the two-component Vlasov-Poisson equations in a single space dimension are proposed and studied here as a simpler analogue problem for the limiting behavior of approximations for the two-dimensional Euler equations with general vorticity of two signs. From numerical experiments and mathematical theory, it is known that much more complex behavior can occur in limiting processes for vortex sheets with general vorticity of two signs as compared with non-negative vorticity. Here such behavior is confirmed rigorously for the simpler analogue problem through explicit examples involving singular charge concentration. For the two-component Vlasov-Poisson equations, the concepts of measure-valued and weak solution are introduced. Explicit examples with charge concentration establish that the limit of weak solutions in a dynamic process is necessarily a measure-valued solution in some cases rather than the anticipated weak solution, i.e. no concentration-cancellation occurs. The limiting behavior of computational regularizations involving high resolution particle methods is presented here both for the instances with measure-valued solutions and also for new examples with non-unique weak solutions. The authors demonstrate that different computational regularizations can exhibit completely different limiting behavior in situations with measure-valued and/or non-unique weak solutions.",
author = "Majda, {Andrew J.} and George Majda and Yuxi Zheng",
year = "1994",
month = "12",
day = "1",
doi = "10.1016/0167-2789(94)90037-X",
language = "English (US)",
volume = "79",
pages = "41--76",
journal = "Physica D: Nonlinear Phenomena",
issn = "0167-2789",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - Concentrations in the one-dimensional Vlasov-Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case

AU - Majda, Andrew J.

AU - Majda, George

AU - Zheng, Yuxi

PY - 1994/12/1

Y1 - 1994/12/1

N2 - Weak and measure-valued solutions for the two-component Vlasov-Poisson equations in a single space dimension are proposed and studied here as a simpler analogue problem for the limiting behavior of approximations for the two-dimensional Euler equations with general vorticity of two signs. From numerical experiments and mathematical theory, it is known that much more complex behavior can occur in limiting processes for vortex sheets with general vorticity of two signs as compared with non-negative vorticity. Here such behavior is confirmed rigorously for the simpler analogue problem through explicit examples involving singular charge concentration. For the two-component Vlasov-Poisson equations, the concepts of measure-valued and weak solution are introduced. Explicit examples with charge concentration establish that the limit of weak solutions in a dynamic process is necessarily a measure-valued solution in some cases rather than the anticipated weak solution, i.e. no concentration-cancellation occurs. The limiting behavior of computational regularizations involving high resolution particle methods is presented here both for the instances with measure-valued solutions and also for new examples with non-unique weak solutions. The authors demonstrate that different computational regularizations can exhibit completely different limiting behavior in situations with measure-valued and/or non-unique weak solutions.

AB - Weak and measure-valued solutions for the two-component Vlasov-Poisson equations in a single space dimension are proposed and studied here as a simpler analogue problem for the limiting behavior of approximations for the two-dimensional Euler equations with general vorticity of two signs. From numerical experiments and mathematical theory, it is known that much more complex behavior can occur in limiting processes for vortex sheets with general vorticity of two signs as compared with non-negative vorticity. Here such behavior is confirmed rigorously for the simpler analogue problem through explicit examples involving singular charge concentration. For the two-component Vlasov-Poisson equations, the concepts of measure-valued and weak solution are introduced. Explicit examples with charge concentration establish that the limit of weak solutions in a dynamic process is necessarily a measure-valued solution in some cases rather than the anticipated weak solution, i.e. no concentration-cancellation occurs. The limiting behavior of computational regularizations involving high resolution particle methods is presented here both for the instances with measure-valued solutions and also for new examples with non-unique weak solutions. The authors demonstrate that different computational regularizations can exhibit completely different limiting behavior in situations with measure-valued and/or non-unique weak solutions.

UR - http://www.scopus.com/inward/record.url?scp=0041465279&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0041465279&partnerID=8YFLogxK

U2 - 10.1016/0167-2789(94)90037-X

DO - 10.1016/0167-2789(94)90037-X

M3 - Article

VL - 79

SP - 41

EP - 76

JO - Physica D: Nonlinear Phenomena

JF - Physica D: Nonlinear Phenomena

SN - 0167-2789

IS - 1

ER -