### Abstract

In this paper we clarify the relation between inverse systems, the RadonNikodym property, the Asymptotic Norming Property of James-Ho [10], and the GFDA spaces introduced in [5].

Original language | English (US) |
---|---|

Title of host publication | Differential Geometry, Mathematical Physics, Mathematics and Society Part 1 |

Pages | 129-138 |

Number of pages | 10 |

Edition | 321 |

State | Published - Oct 2008 |

### Publication series

Name | Asterisque |
---|---|

Number | 321 |

ISSN (Print) | 03031179 |

### Fingerprint

### Keywords

- Asymptotic Norming property
- Inverse limit
- Radon-Nikodym property
- Separable dual space

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Differential Geometry, Mathematical Physics, Mathematics and Society Part 1*(321 ed., pp. 129-138). (Asterisque; No. 321).

**Characterization of the Radon-Nikodym property in terms of inverse limits.** / Cheeger, Jeff; Kleiner, Bruce.

Research output: Chapter in Book/Report/Conference proceeding › Chapter

*Differential Geometry, Mathematical Physics, Mathematics and Society Part 1.*321 edn, Asterisque, no. 321, pp. 129-138.

}

TY - CHAP

T1 - Characterization of the Radon-Nikodym property in terms of inverse limits

AU - Cheeger, Jeff

AU - Kleiner, Bruce

PY - 2008/10

Y1 - 2008/10

N2 - In this paper we clarify the relation between inverse systems, the RadonNikodym property, the Asymptotic Norming Property of James-Ho [10], and the GFDA spaces introduced in [5].

AB - In this paper we clarify the relation between inverse systems, the RadonNikodym property, the Asymptotic Norming Property of James-Ho [10], and the GFDA spaces introduced in [5].

KW - Asymptotic Norming property

KW - Inverse limit

KW - Radon-Nikodym property

KW - Separable dual space

UR - http://www.scopus.com/inward/record.url?scp=66249098114&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=66249098114&partnerID=8YFLogxK

M3 - Chapter

SN - 9782856292587

T3 - Asterisque

SP - 129

EP - 138

BT - Differential Geometry, Mathematical Physics, Mathematics and Society Part 1

ER -