Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems

Rafail V. Abramov, Andrew J. Majda

Research output: Contribution to journalArticle

Abstract

In a recent paper the authors developed and tested two novel computational algorithms for predicting the mean linear response of a chaotic dynamical system to small changes in external forcing via the fluctuation-dissipation theorem (FDT): the short-time FDT (ST-FDT), and the hybrid Axiom A FDT (hA-FDT). Unlike the earlier work in developing fluctuation-dissipation theorem-type computational strategies for chaotic nonlinear systems with forcing and dissipation, these two new methods are based on the theory of Sinai-Ruelle-Bowen probability measures, which commonly describe the equilibrium state of such dynamical systems. These two algorithms take into account the fact that the dynamics of chaotic nonlinear forced-dissipative systems often reside on chaotic fractal attractors, where the classical quasi-Gaussian (qG-FDT) approximation of the fluctuation-dissipation theorem often fails to produce satisfactory response prediction, especially in dynamical regimes with weak and moderate degrees of chaos. It has been discovered that the ST-FDT algorithm is an extremely precise linear response approximation for short response times, but numerically unstable for longer response times. On the other hand, the hA-FDT method is numerically stable for all times, but is less accurate for short times. Here we develop blended linear response algorithms, by combining accurate prediction of the ST-FDT method at short response times with numerical stability of qG-FDT and hA-FDT methods at longer response times. The new blended linear response algorithms are tested on the nonlinear Lorenz 96 model with 40 degrees of freedom, chaotic behaviour, forcing, dissipation, and mimicking large-scale features of real-world geophysical models in a wide range of dynamical regimes varying from weakly to strongly chaotic, and to fully turbulent. The results below for the blended response algorithms have a high level of accuracy for the linear response of both mean state and variance throughout all the different chaotic regimes of the 40-mode model. These results point the way towards the potential use of the blended response algorithms in operational long-term climate change projection.

Original languageEnglish (US)
Pages (from-to)2793-2821
Number of pages29
JournalNonlinearity
Volume20
Issue number12
DOIs
StatePublished - Dec 1 2007

Fingerprint

Complex Dynamical Systems
Fluctuation-dissipation Theorem
Nonlinear dynamical systems
Nonlinear Dynamical Systems
dynamical systems
Dissipation
Linear Response
dissipation
Fluctuations
Axiom A
Response Time
theorems
Forcing
Dynamical systems
Chaotic Dynamical Systems
Prediction
Dissipative Systems
Computational Algorithm
Convergence of numerical methods
Climate Change

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics
  • Mathematical Physics
  • Statistical and Nonlinear Physics

Cite this

Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems. / Abramov, Rafail V.; Majda, Andrew J.

In: Nonlinearity, Vol. 20, No. 12, 01.12.2007, p. 2793-2821.

Research output: Contribution to journalArticle

@article{3d839aa67dc547febb106890ed27fc06,
title = "Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems",
abstract = "In a recent paper the authors developed and tested two novel computational algorithms for predicting the mean linear response of a chaotic dynamical system to small changes in external forcing via the fluctuation-dissipation theorem (FDT): the short-time FDT (ST-FDT), and the hybrid Axiom A FDT (hA-FDT). Unlike the earlier work in developing fluctuation-dissipation theorem-type computational strategies for chaotic nonlinear systems with forcing and dissipation, these two new methods are based on the theory of Sinai-Ruelle-Bowen probability measures, which commonly describe the equilibrium state of such dynamical systems. These two algorithms take into account the fact that the dynamics of chaotic nonlinear forced-dissipative systems often reside on chaotic fractal attractors, where the classical quasi-Gaussian (qG-FDT) approximation of the fluctuation-dissipation theorem often fails to produce satisfactory response prediction, especially in dynamical regimes with weak and moderate degrees of chaos. It has been discovered that the ST-FDT algorithm is an extremely precise linear response approximation for short response times, but numerically unstable for longer response times. On the other hand, the hA-FDT method is numerically stable for all times, but is less accurate for short times. Here we develop blended linear response algorithms, by combining accurate prediction of the ST-FDT method at short response times with numerical stability of qG-FDT and hA-FDT methods at longer response times. The new blended linear response algorithms are tested on the nonlinear Lorenz 96 model with 40 degrees of freedom, chaotic behaviour, forcing, dissipation, and mimicking large-scale features of real-world geophysical models in a wide range of dynamical regimes varying from weakly to strongly chaotic, and to fully turbulent. The results below for the blended response algorithms have a high level of accuracy for the linear response of both mean state and variance throughout all the different chaotic regimes of the 40-mode model. These results point the way towards the potential use of the blended response algorithms in operational long-term climate change projection.",
author = "Abramov, {Rafail V.} and Majda, {Andrew J.}",
year = "2007",
month = "12",
day = "1",
doi = "10.1088/0951-7715/20/12/004",
language = "English (US)",
volume = "20",
pages = "2793--2821",
journal = "Nonlinearity",
issn = "0951-7715",
publisher = "IOP Publishing Ltd.",
number = "12",

}

TY - JOUR

T1 - Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems

AU - Abramov, Rafail V.

AU - Majda, Andrew J.

PY - 2007/12/1

Y1 - 2007/12/1

N2 - In a recent paper the authors developed and tested two novel computational algorithms for predicting the mean linear response of a chaotic dynamical system to small changes in external forcing via the fluctuation-dissipation theorem (FDT): the short-time FDT (ST-FDT), and the hybrid Axiom A FDT (hA-FDT). Unlike the earlier work in developing fluctuation-dissipation theorem-type computational strategies for chaotic nonlinear systems with forcing and dissipation, these two new methods are based on the theory of Sinai-Ruelle-Bowen probability measures, which commonly describe the equilibrium state of such dynamical systems. These two algorithms take into account the fact that the dynamics of chaotic nonlinear forced-dissipative systems often reside on chaotic fractal attractors, where the classical quasi-Gaussian (qG-FDT) approximation of the fluctuation-dissipation theorem often fails to produce satisfactory response prediction, especially in dynamical regimes with weak and moderate degrees of chaos. It has been discovered that the ST-FDT algorithm is an extremely precise linear response approximation for short response times, but numerically unstable for longer response times. On the other hand, the hA-FDT method is numerically stable for all times, but is less accurate for short times. Here we develop blended linear response algorithms, by combining accurate prediction of the ST-FDT method at short response times with numerical stability of qG-FDT and hA-FDT methods at longer response times. The new blended linear response algorithms are tested on the nonlinear Lorenz 96 model with 40 degrees of freedom, chaotic behaviour, forcing, dissipation, and mimicking large-scale features of real-world geophysical models in a wide range of dynamical regimes varying from weakly to strongly chaotic, and to fully turbulent. The results below for the blended response algorithms have a high level of accuracy for the linear response of both mean state and variance throughout all the different chaotic regimes of the 40-mode model. These results point the way towards the potential use of the blended response algorithms in operational long-term climate change projection.

AB - In a recent paper the authors developed and tested two novel computational algorithms for predicting the mean linear response of a chaotic dynamical system to small changes in external forcing via the fluctuation-dissipation theorem (FDT): the short-time FDT (ST-FDT), and the hybrid Axiom A FDT (hA-FDT). Unlike the earlier work in developing fluctuation-dissipation theorem-type computational strategies for chaotic nonlinear systems with forcing and dissipation, these two new methods are based on the theory of Sinai-Ruelle-Bowen probability measures, which commonly describe the equilibrium state of such dynamical systems. These two algorithms take into account the fact that the dynamics of chaotic nonlinear forced-dissipative systems often reside on chaotic fractal attractors, where the classical quasi-Gaussian (qG-FDT) approximation of the fluctuation-dissipation theorem often fails to produce satisfactory response prediction, especially in dynamical regimes with weak and moderate degrees of chaos. It has been discovered that the ST-FDT algorithm is an extremely precise linear response approximation for short response times, but numerically unstable for longer response times. On the other hand, the hA-FDT method is numerically stable for all times, but is less accurate for short times. Here we develop blended linear response algorithms, by combining accurate prediction of the ST-FDT method at short response times with numerical stability of qG-FDT and hA-FDT methods at longer response times. The new blended linear response algorithms are tested on the nonlinear Lorenz 96 model with 40 degrees of freedom, chaotic behaviour, forcing, dissipation, and mimicking large-scale features of real-world geophysical models in a wide range of dynamical regimes varying from weakly to strongly chaotic, and to fully turbulent. The results below for the blended response algorithms have a high level of accuracy for the linear response of both mean state and variance throughout all the different chaotic regimes of the 40-mode model. These results point the way towards the potential use of the blended response algorithms in operational long-term climate change projection.

UR - http://www.scopus.com/inward/record.url?scp=36348987164&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36348987164&partnerID=8YFLogxK

U2 - 10.1088/0951-7715/20/12/004

DO - 10.1088/0951-7715/20/12/004

M3 - Article

VL - 20

SP - 2793

EP - 2821

JO - Nonlinearity

JF - Nonlinearity

SN - 0951-7715

IS - 12

ER -