### Abstract

We establish a connection between the ultra-Planckian scattering amplitudes in field and string theory and unitarization by black hole formation in these scattering processes. Using as a guideline an explicit microscopic theory in which the black hole represents a bound-state of many soft gravitons at the quantum critical point, we were able to identify and compute a set of perturbative amplitudes relevant for black hole formation. These are the tree-level N-graviton scattering S-matrix elements in a kinematical regime (called classicalization limit) where the two incoming ultra-Planckian gravitons produce a large number N of soft gravitons. We compute these amplitudes by using the Kawai-Lewellen-Tye relations, as well as scattering equations and string theory techniques. We discover that this limit reveals the key features of the microscopic corpuscular black hole N-portrait. In particular, the perturbative suppression factor of a N-graviton final state, derived from the amplitude, matches the non-perturbative black hole entropy when N reaches the quantum criticality value, whereas final states with different value of N are either suppressed or excluded by non-perturbative corpuscular physics. Thus we identify the microscopic reason behind the black hole dominance over other final states including non-black hole classical object. In the parameterization of the classicalization limit the scattering equations can be solved exactly allowing us to obtain closed expressions for the high-energy limit of the open and closed superstring tree-level scattering amplitudes for a generic number N of external legs. We demonstrate matching and complementarity between the string theory and field theory in different large-. s and large- N regimes.

Original language | English (US) |
---|---|

Pages (from-to) | 187-235 |

Number of pages | 49 |

Journal | Nuclear Physics B |

Volume | 893 |

DOIs | |

State | Published - Apr 1 2015 |

### Fingerprint

### ASJC Scopus subject areas

- Nuclear and High Energy Physics

### Cite this

*Nuclear Physics B*,

*893*, 187-235. https://doi.org/10.1016/j.nuclphysb.2015.02.004