Birationally isotrivial fiber spaces

Fedor Bogomolov, Christian Böhning, Hans Christian Graf von Bothmer

Research output: Contribution to journalArticle

Abstract

We prove that a family of varieties is birationally isotrivial if all the fibers are birational to each other.

Original languageEnglish (US)
Pages (from-to)45-54
Number of pages10
JournalEuropean Journal of Mathematics
Volume2
Issue number1
DOIs
StatePublished - Mar 1 2016

Fingerprint

Fiber
Family

Keywords

  • Birational automorphism groups
  • Cremona groups
  • Fiber spaces
  • Rational varieties

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Birationally isotrivial fiber spaces. / Bogomolov, Fedor; Böhning, Christian; Graf von Bothmer, Hans Christian.

In: European Journal of Mathematics, Vol. 2, No. 1, 01.03.2016, p. 45-54.

Research output: Contribution to journalArticle

Bogomolov, Fedor ; Böhning, Christian ; Graf von Bothmer, Hans Christian. / Birationally isotrivial fiber spaces. In: European Journal of Mathematics. 2016 ; Vol. 2, No. 1. pp. 45-54.
@article{1fc0ec0df7ad43458149c8253f9e163e,
title = "Birationally isotrivial fiber spaces",
abstract = "We prove that a family of varieties is birationally isotrivial if all the fibers are birational to each other.",
keywords = "Birational automorphism groups, Cremona groups, Fiber spaces, Rational varieties",
author = "Fedor Bogomolov and Christian B{\"o}hning and {Graf von Bothmer}, {Hans Christian}",
year = "2016",
month = "3",
day = "1",
doi = "10.1007/s40879-015-0037-5",
language = "English (US)",
volume = "2",
pages = "45--54",
journal = "European Journal of Mathematics",
issn = "2199-675X",
publisher = "Springer International Publishing AG",
number = "1",

}

TY - JOUR

T1 - Birationally isotrivial fiber spaces

AU - Bogomolov, Fedor

AU - Böhning, Christian

AU - Graf von Bothmer, Hans Christian

PY - 2016/3/1

Y1 - 2016/3/1

N2 - We prove that a family of varieties is birationally isotrivial if all the fibers are birational to each other.

AB - We prove that a family of varieties is birationally isotrivial if all the fibers are birational to each other.

KW - Birational automorphism groups

KW - Cremona groups

KW - Fiber spaces

KW - Rational varieties

UR - http://www.scopus.com/inward/record.url?scp=84958721786&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84958721786&partnerID=8YFLogxK

U2 - 10.1007/s40879-015-0037-5

DO - 10.1007/s40879-015-0037-5

M3 - Article

AN - SCOPUS:84958721786

VL - 2

SP - 45

EP - 54

JO - European Journal of Mathematics

JF - European Journal of Mathematics

SN - 2199-675X

IS - 1

ER -