BH3 Death Domain Peptide Induces Cell Type-selective Mitochondrial Outer Membrane Permeability

Brian M. Polster, Kathleen W. Kinnally, Gary Fiskum

Research output: Contribution to journalArticle

Abstract

The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 μM) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.

Original languageEnglish (US)
Pages (from-to)37887-37894
Number of pages8
JournalJournal of Biological Chemistry
Volume276
Issue number41
StatePublished - Oct 12 2001

Fingerprint

Mitochondrial Membranes
Cytochromes c
Permeability
Membranes
Peptides
Mitochondria
Adenosine Triphosphate
Mitochondrial Swelling
Adenylate Kinase
Death Domain
Amino Acid Substitution
Membrane Potentials
Swelling
Respiration
Substitution reactions
Bax protein (53-86)
Ions
Apoptosis
Amino Acids

ASJC Scopus subject areas

  • Biochemistry

Cite this

BH3 Death Domain Peptide Induces Cell Type-selective Mitochondrial Outer Membrane Permeability. / Polster, Brian M.; Kinnally, Kathleen W.; Fiskum, Gary.

In: Journal of Biological Chemistry, Vol. 276, No. 41, 12.10.2001, p. 37887-37894.

Research output: Contribution to journalArticle

Polster, BM, Kinnally, KW & Fiskum, G 2001, 'BH3 Death Domain Peptide Induces Cell Type-selective Mitochondrial Outer Membrane Permeability', Journal of Biological Chemistry, vol. 276, no. 41, pp. 37887-37894.
Polster, Brian M. ; Kinnally, Kathleen W. ; Fiskum, Gary. / BH3 Death Domain Peptide Induces Cell Type-selective Mitochondrial Outer Membrane Permeability. In: Journal of Biological Chemistry. 2001 ; Vol. 276, No. 41. pp. 37887-37894.
@article{99c9d78d693d4beca3de30e0444c7f1b,
title = "BH3 Death Domain Peptide Induces Cell Type-selective Mitochondrial Outer Membrane Permeability",
abstract = "The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 μM) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.",
author = "Polster, {Brian M.} and Kinnally, {Kathleen W.} and Gary Fiskum",
year = "2001",
month = "10",
day = "12",
language = "English (US)",
volume = "276",
pages = "37887--37894",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "41",

}

TY - JOUR

T1 - BH3 Death Domain Peptide Induces Cell Type-selective Mitochondrial Outer Membrane Permeability

AU - Polster, Brian M.

AU - Kinnally, Kathleen W.

AU - Fiskum, Gary

PY - 2001/10/12

Y1 - 2001/10/12

N2 - The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 μM) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.

AB - The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 μM) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.

UR - http://www.scopus.com/inward/record.url?scp=0035851110&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035851110&partnerID=8YFLogxK

M3 - Article

C2 - 11483608

AN - SCOPUS:0035851110

VL - 276

SP - 37887

EP - 37894

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 41

ER -