Balanced line bundles on Fano varieties

Brian Lehmann, Sho Tanimoto, Yuri Tschinkel

Research output: Contribution to journalArticle

Abstract

A conjecture of Batyrev and Manin relates arithmetic properties of varieties with ample anticanonical class to geometric invariants. We analyze the geometry underlying these invariants using the Minimal Model Program and then apply our results to primitive Fano threefolds.

Original languageEnglish (US)
Pages (from-to)91-131
Number of pages41
JournalJournal fur die Reine und Angewandte Mathematik
Volume2018
Issue number743
DOIs
StatePublished - Oct 1 2018

Fingerprint

Fano Variety
Geometric Invariants
Minimal Model
Line Bundle
Threefolds
Invariant
Geometry
Class

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Balanced line bundles on Fano varieties. / Lehmann, Brian; Tanimoto, Sho; Tschinkel, Yuri.

In: Journal fur die Reine und Angewandte Mathematik, Vol. 2018, No. 743, 01.10.2018, p. 91-131.

Research output: Contribution to journalArticle

Lehmann, Brian ; Tanimoto, Sho ; Tschinkel, Yuri. / Balanced line bundles on Fano varieties. In: Journal fur die Reine und Angewandte Mathematik. 2018 ; Vol. 2018, No. 743. pp. 91-131.
@article{58b41f7d311b4317b7a5d634301fa85c,
title = "Balanced line bundles on Fano varieties",
abstract = "A conjecture of Batyrev and Manin relates arithmetic properties of varieties with ample anticanonical class to geometric invariants. We analyze the geometry underlying these invariants using the Minimal Model Program and then apply our results to primitive Fano threefolds.",
author = "Brian Lehmann and Sho Tanimoto and Yuri Tschinkel",
year = "2018",
month = "10",
day = "1",
doi = "10.1515/crelle-2015-0084",
language = "English (US)",
volume = "2018",
pages = "91--131",
journal = "Journal fur die Reine und Angewandte Mathematik",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH & Co. KG",
number = "743",

}

TY - JOUR

T1 - Balanced line bundles on Fano varieties

AU - Lehmann, Brian

AU - Tanimoto, Sho

AU - Tschinkel, Yuri

PY - 2018/10/1

Y1 - 2018/10/1

N2 - A conjecture of Batyrev and Manin relates arithmetic properties of varieties with ample anticanonical class to geometric invariants. We analyze the geometry underlying these invariants using the Minimal Model Program and then apply our results to primitive Fano threefolds.

AB - A conjecture of Batyrev and Manin relates arithmetic properties of varieties with ample anticanonical class to geometric invariants. We analyze the geometry underlying these invariants using the Minimal Model Program and then apply our results to primitive Fano threefolds.

UR - http://www.scopus.com/inward/record.url?scp=85045477219&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045477219&partnerID=8YFLogxK

U2 - 10.1515/crelle-2015-0084

DO - 10.1515/crelle-2015-0084

M3 - Article

AN - SCOPUS:85045477219

VL - 2018

SP - 91

EP - 131

JO - Journal fur die Reine und Angewandte Mathematik

JF - Journal fur die Reine und Angewandte Mathematik

SN - 0075-4102

IS - 743

ER -