Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. The complex case

Elena Beretta, Elisa Francini

Research output: Contribution to journalArticle

Abstract

We consider a conducting body with complex valued admittivity containing a finite number of well separated thin inclusions. We derive an asymptotic formula for the boundary values of the potential in terms of the width of the inclusions.

Original languageEnglish (US)
Pages (from-to)209-219
Number of pages11
JournalRendiconti dell'Istituto di Matematica dell'Universita di Trieste
Volume48
Issue number1
DOIs
StatePublished - Jan 1 2016

Fingerprint

Inhomogeneity
Asymptotic Formula
Inclusion
Voltage
Boundary Value

Keywords

  • Complex coecients
  • Thin inhomogeneities

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

@article{1c7494276bda4af69c85883fbc1e48ee,
title = "Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. The complex case",
abstract = "We consider a conducting body with complex valued admittivity containing a finite number of well separated thin inclusions. We derive an asymptotic formula for the boundary values of the potential in terms of the width of the inclusions.",
keywords = "Complex coecients, Thin inhomogeneities",
author = "Elena Beretta and Elisa Francini",
year = "2016",
month = "1",
day = "1",
doi = "10.13137/2464-8728/13157",
language = "English (US)",
volume = "48",
pages = "209--219",
journal = "Rendiconti dell'Istituto di Matematica dell'Universita di Trieste",
issn = "0049-4704",
publisher = "Istituto di matematica, Universita di Trieste",
number = "1",

}

TY - JOUR

T1 - Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. The complex case

AU - Beretta, Elena

AU - Francini, Elisa

PY - 2016/1/1

Y1 - 2016/1/1

N2 - We consider a conducting body with complex valued admittivity containing a finite number of well separated thin inclusions. We derive an asymptotic formula for the boundary values of the potential in terms of the width of the inclusions.

AB - We consider a conducting body with complex valued admittivity containing a finite number of well separated thin inclusions. We derive an asymptotic formula for the boundary values of the potential in terms of the width of the inclusions.

KW - Complex coecients

KW - Thin inhomogeneities

UR - http://www.scopus.com/inward/record.url?scp=85009877700&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85009877700&partnerID=8YFLogxK

U2 - 10.13137/2464-8728/13157

DO - 10.13137/2464-8728/13157

M3 - Article

VL - 48

SP - 209

EP - 219

JO - Rendiconti dell'Istituto di Matematica dell'Universita di Trieste

JF - Rendiconti dell'Istituto di Matematica dell'Universita di Trieste

SN - 0049-4704

IS - 1

ER -