### Abstract

Original language | Undefined |
---|---|

Article number | 1211.4138 |

Journal | arXiv |

State | Published - Nov 17 2012 |

### Keywords

- math.PR

### Cite this

^{2}x {0,1}.

*arXiv*, [1211.4138].

**Absence of site percolation at criticality in Z ^{2} x {0,1}.** / Damron, M.; Newman, Charles M.; Sidoravicius, Vladas.

Research output: Contribution to journal › Article

^{2}x {0,1}',

*arXiv*.

^{2}x {0,1}. arXiv. 2012 Nov 17. 1211.4138.

}

TY - JOUR

T1 - Absence of site percolation at criticality in Z2 x {0,1}

AU - Damron, M.

AU - Newman, Charles M.

AU - Sidoravicius, Vladas

N1 - 13 pages, 3 figures

PY - 2012/11/17

Y1 - 2012/11/17

N2 - In this note we consider site percolation on a two dimensional sandwich of thickness two, the graph Z^2 x {0,1}. We prove that there is no percolation at the critical point. The same arguments are valid for a sandwich of thickness three with periodic boundary conditions. It remains an open problem to extend this result to other sandwiches.

AB - In this note we consider site percolation on a two dimensional sandwich of thickness two, the graph Z^2 x {0,1}. We prove that there is no percolation at the critical point. The same arguments are valid for a sandwich of thickness three with periodic boundary conditions. It remains an open problem to extend this result to other sandwiches.

KW - math.PR

M3 - Article

JO - arXiv

JF - arXiv

M1 - 1211.4138

ER -