A quantization property for moving line vortices

Fang-Hua Lin, Tristan Rivière

Research output: Contribution to journalArticle

Abstract

We prove that if the energy of a time-evolving three-dimensional Ginzburg-Landau configuration is small enough on a given parabolic ball, then no line vortex passes through the ball of half-radius.

Original languageEnglish (US)
Pages (from-to)826-850
Number of pages25
JournalCommunications on Pure and Applied Mathematics
Volume54
Issue number7
DOIs
StatePublished - Jul 2001

Fingerprint

Vortex
Quantization
Ball
Vortex flow
Line
Ginzburg-Landau
Radius
Three-dimensional
Configuration
Energy

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

A quantization property for moving line vortices. / Lin, Fang-Hua; Rivière, Tristan.

In: Communications on Pure and Applied Mathematics, Vol. 54, No. 7, 07.2001, p. 826-850.

Research output: Contribution to journalArticle

@article{820a843da0a34e229fcf5791a100a59e,
title = "A quantization property for moving line vortices",
abstract = "We prove that if the energy of a time-evolving three-dimensional Ginzburg-Landau configuration is small enough on a given parabolic ball, then no line vortex passes through the ball of half-radius.",
author = "Fang-Hua Lin and Tristan Rivi{\`e}re",
year = "2001",
month = "7",
doi = "10.1002/cpa.3003",
language = "English (US)",
volume = "54",
pages = "826--850",
journal = "Communications on Pure and Applied Mathematics",
issn = "0010-3640",
publisher = "Wiley-Liss Inc.",
number = "7",

}

TY - JOUR

T1 - A quantization property for moving line vortices

AU - Lin, Fang-Hua

AU - Rivière, Tristan

PY - 2001/7

Y1 - 2001/7

N2 - We prove that if the energy of a time-evolving three-dimensional Ginzburg-Landau configuration is small enough on a given parabolic ball, then no line vortex passes through the ball of half-radius.

AB - We prove that if the energy of a time-evolving three-dimensional Ginzburg-Landau configuration is small enough on a given parabolic ball, then no line vortex passes through the ball of half-radius.

UR - http://www.scopus.com/inward/record.url?scp=0035606649&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035606649&partnerID=8YFLogxK

U2 - 10.1002/cpa.3003

DO - 10.1002/cpa.3003

M3 - Article

VL - 54

SP - 826

EP - 850

JO - Communications on Pure and Applied Mathematics

JF - Communications on Pure and Applied Mathematics

SN - 0010-3640

IS - 7

ER -