A note on improved deterministic time simulation of nondeterministic space for small space

Ee Chien Chang, Chee Yap

Research output: Contribution to journalArticle

Abstract

We show that NSPACE(s(n)) ⊆ DTIME(n · O(1)s(n)). This improves the known bound of NSPACE(s(n)) ⊆ DTIME(n2 · O(l)s(n)) when the space is "small", namely, s(n) = o(logn). We use a simple encoding trick combined with an amortization argument.

Original languageEnglish (US)
Pages (from-to)155-157
Number of pages3
JournalInformation Processing Letters
Volume55
Issue number3
DOIs
StatePublished - Aug 11 1995

Fingerprint

Encoding
Simulation

Keywords

  • Computational complexity
  • Theory of computation

ASJC Scopus subject areas

  • Computer Science Applications
  • Information Systems
  • Signal Processing
  • Theoretical Computer Science
  • Computational Theory and Mathematics

Cite this

A note on improved deterministic time simulation of nondeterministic space for small space. / Chang, Ee Chien; Yap, Chee.

In: Information Processing Letters, Vol. 55, No. 3, 11.08.1995, p. 155-157.

Research output: Contribution to journalArticle

@article{7bb8929e937b4f7385259fb16a4a40ed,
title = "A note on improved deterministic time simulation of nondeterministic space for small space",
abstract = "We show that NSPACE(s(n)) ⊆ DTIME(n · O(1)s(n)). This improves the known bound of NSPACE(s(n)) ⊆ DTIME(n2 · O(l)s(n)) when the space is {"}small{"}, namely, s(n) = o(logn). We use a simple encoding trick combined with an amortization argument.",
keywords = "Computational complexity, Theory of computation",
author = "Chang, {Ee Chien} and Chee Yap",
year = "1995",
month = "8",
day = "11",
doi = "10.1016/0020-0190(95)00093-R",
language = "English (US)",
volume = "55",
pages = "155--157",
journal = "Information Processing Letters",
issn = "0020-0190",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - A note on improved deterministic time simulation of nondeterministic space for small space

AU - Chang, Ee Chien

AU - Yap, Chee

PY - 1995/8/11

Y1 - 1995/8/11

N2 - We show that NSPACE(s(n)) ⊆ DTIME(n · O(1)s(n)). This improves the known bound of NSPACE(s(n)) ⊆ DTIME(n2 · O(l)s(n)) when the space is "small", namely, s(n) = o(logn). We use a simple encoding trick combined with an amortization argument.

AB - We show that NSPACE(s(n)) ⊆ DTIME(n · O(1)s(n)). This improves the known bound of NSPACE(s(n)) ⊆ DTIME(n2 · O(l)s(n)) when the space is "small", namely, s(n) = o(logn). We use a simple encoding trick combined with an amortization argument.

KW - Computational complexity

KW - Theory of computation

UR - http://www.scopus.com/inward/record.url?scp=0346845112&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0346845112&partnerID=8YFLogxK

U2 - 10.1016/0020-0190(95)00093-R

DO - 10.1016/0020-0190(95)00093-R

M3 - Article

VL - 55

SP - 155

EP - 157

JO - Information Processing Letters

JF - Information Processing Letters

SN - 0020-0190

IS - 3

ER -