A note on bipartite graphs without 2k-cycles

Assaf Naor, Jacques Verstraëte

Research output: Contribution to journalArticle

Abstract

The question of the maximum number ex(m,n,C2k) of edges in an m by n bipartite graph without a cycle of length 2k is addressed in this note. For each $k \geq 2$, it is shown that ex(m,n,C2k) ≤ { (2k-3)[(mn)k+1/2k + m + n] if k is odd,[2pt] (2k-3)[m k+2/2k n1/2 + m + n] if k is even.

Original languageEnglish (US)
Pages (from-to)845-849
Number of pages5
JournalCombinatorics Probability and Computing
Volume14
Issue number5-6
DOIs
StatePublished - Nov 2005

Fingerprint

Bipartite Graph
Odd
Cycle

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Mathematics(all)
  • Discrete Mathematics and Combinatorics
  • Statistics and Probability
  • Theoretical Computer Science

Cite this

A note on bipartite graphs without 2k-cycles. / Naor, Assaf; Verstraëte, Jacques.

In: Combinatorics Probability and Computing, Vol. 14, No. 5-6, 11.2005, p. 845-849.

Research output: Contribution to journalArticle

Naor, Assaf ; Verstraëte, Jacques. / A note on bipartite graphs without 2k-cycles. In: Combinatorics Probability and Computing. 2005 ; Vol. 14, No. 5-6. pp. 845-849.
@article{63600063fcd949069fa227ecdffdc1f5,
title = "A note on bipartite graphs without 2k-cycles",
abstract = "The question of the maximum number ex(m,n,C2k) of edges in an m by n bipartite graph without a cycle of length 2k is addressed in this note. For each $k \geq 2$, it is shown that ex(m,n,C2k) ≤ { (2k-3)[(mn)k+1/2k + m + n] if k is odd,[2pt] (2k-3)[m k+2/2k n1/2 + m + n] if k is even.",
author = "Assaf Naor and Jacques Verstra{\"e}te",
year = "2005",
month = "11",
doi = "10.1017/S0963548305007029",
language = "English (US)",
volume = "14",
pages = "845--849",
journal = "Combinatorics Probability and Computing",
issn = "0963-5483",
publisher = "Cambridge University Press",
number = "5-6",

}

TY - JOUR

T1 - A note on bipartite graphs without 2k-cycles

AU - Naor, Assaf

AU - Verstraëte, Jacques

PY - 2005/11

Y1 - 2005/11

N2 - The question of the maximum number ex(m,n,C2k) of edges in an m by n bipartite graph without a cycle of length 2k is addressed in this note. For each $k \geq 2$, it is shown that ex(m,n,C2k) ≤ { (2k-3)[(mn)k+1/2k + m + n] if k is odd,[2pt] (2k-3)[m k+2/2k n1/2 + m + n] if k is even.

AB - The question of the maximum number ex(m,n,C2k) of edges in an m by n bipartite graph without a cycle of length 2k is addressed in this note. For each $k \geq 2$, it is shown that ex(m,n,C2k) ≤ { (2k-3)[(mn)k+1/2k + m + n] if k is odd,[2pt] (2k-3)[m k+2/2k n1/2 + m + n] if k is even.

UR - http://www.scopus.com/inward/record.url?scp=26644475472&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=26644475472&partnerID=8YFLogxK

U2 - 10.1017/S0963548305007029

DO - 10.1017/S0963548305007029

M3 - Article

VL - 14

SP - 845

EP - 849

JO - Combinatorics Probability and Computing

JF - Combinatorics Probability and Computing

SN - 0963-5483

IS - 5-6

ER -