A molecular mechanics and dynamics study of the minor adduct between DNA and the carcinogen 2-(acetylamino)fluorene (dG-N2-AAF)

Rosalyn Grad, Robert Shapiro, Brian E. Hingerty, Suse Broyde

Research output: Contribution to journalArticle

Abstract

Experimental studies involving the carcinogenic aromatic amine 2- (acetylamino)fluorene (AAF) have afforded two acetylated DNA adducts, the major one bound to C8 of guanine and a minor adduct bound to N2 of guanine. The minor adduct may be impotent in carcinogenesis because it persists, while the major adduct is rapidly repaired. Primer extension studies of the minor adduct have indicated that it blocks DNA synthesis, with some bypass and misincorporation of adenine opposite the lesion [Shibutani, S., and Grollman, A. P. (1993) Chem. Res. Toxicol. 6, 819-824]. No experimental structural information is available for this adduct. Extensive minimized potential energy searches involving thousands of trials and molecular dynamics simulations were used to study the conformation of this adduct in three sequences: I, d(C1-G2-C3-[AAF]G4-C5-G6-C7)·d(G8-C9-G10-C11-G12-C13- G14); II, the sequence of Shibutani and Grollman, d(C1-T2-A3-[AAF]G4-T5-C6- A7)·d(T8-G9-A10-C11-T12-A13-G14); and III, which is the same as II but with a mismatched adenine in position 11, opposite the lesion. AAF was located in the minor groove in the low-energy structures of all sequences. In the lowest energy form of the C3-[AAF]G4-C5 sequence I, the fluorenyl rings point in the 3' direction along the modified strand and the acetyl in the 5' direction. These orientations are reversed in the second lowest energy structure of this sequence, and the energy of this structure is 1.4 kcal/mol higher. Watson-Crick hydrogen bonding is intact in both structures. In the two lowest energy structures of the A3-[AAF]G4-T5 sequence II, the AAF is also located in the minor groove with Watson-Crick hydrogen bonding intact. However, in the lowest energy form, the fluorenyl rings point in the 5' direction and the acetyl in the 3' direction. The energy of the structure with opposite orientation is 5.1 kcal/mol higher. In sequence III with adenine mismatched to the modified guanine, the lowest energy form also had the fluorenyl rings oriented 5' in the minor groove with intact Watson- Crick base pairing. However, the mispaired adenine adopts a syn orientation with Hoogsteen pairing to the modified guanine. These results suggest that the orientation of the AAF in the minor groove may be DNA sequence dependent. Mobile aspects of favored structures derived from molecular dynamics simulations with explicit solvent and salt support the essentially undistorting nature of this lesion, which is in harmony with its persistence in mammalian systems.

Original languageEnglish (US)
Pages (from-to)1123-1132
Number of pages10
JournalChemical Research in Toxicology
Volume10
Issue number10
DOIs
StatePublished - Oct 1997

Fingerprint

Molecular mechanics
DNA Adducts
Molecular Dynamics Simulation
Mechanics
Carcinogens
Molecular dynamics
Guanine
Adenine
Hydrogen Bonding
Hydrogen bonds
fluorene
DNA sequences
antineoplaston A10
Computer simulation
Potential energy
Base Pairing
Amines
Conformations
Carcinogenesis
Salts

ASJC Scopus subject areas

  • Drug Discovery
  • Organic Chemistry
  • Chemistry(all)
  • Toxicology
  • Health, Toxicology and Mutagenesis

Cite this

A molecular mechanics and dynamics study of the minor adduct between DNA and the carcinogen 2-(acetylamino)fluorene (dG-N2-AAF). / Grad, Rosalyn; Shapiro, Robert; Hingerty, Brian E.; Broyde, Suse.

In: Chemical Research in Toxicology, Vol. 10, No. 10, 10.1997, p. 1123-1132.

Research output: Contribution to journalArticle

@article{ae46609be2324598a4f8324b144b9d5a,
title = "A molecular mechanics and dynamics study of the minor adduct between DNA and the carcinogen 2-(acetylamino)fluorene (dG-N2-AAF)",
abstract = "Experimental studies involving the carcinogenic aromatic amine 2- (acetylamino)fluorene (AAF) have afforded two acetylated DNA adducts, the major one bound to C8 of guanine and a minor adduct bound to N2 of guanine. The minor adduct may be impotent in carcinogenesis because it persists, while the major adduct is rapidly repaired. Primer extension studies of the minor adduct have indicated that it blocks DNA synthesis, with some bypass and misincorporation of adenine opposite the lesion [Shibutani, S., and Grollman, A. P. (1993) Chem. Res. Toxicol. 6, 819-824]. No experimental structural information is available for this adduct. Extensive minimized potential energy searches involving thousands of trials and molecular dynamics simulations were used to study the conformation of this adduct in three sequences: I, d(C1-G2-C3-[AAF]G4-C5-G6-C7)·d(G8-C9-G10-C11-G12-C13- G14); II, the sequence of Shibutani and Grollman, d(C1-T2-A3-[AAF]G4-T5-C6- A7)·d(T8-G9-A10-C11-T12-A13-G14); and III, which is the same as II but with a mismatched adenine in position 11, opposite the lesion. AAF was located in the minor groove in the low-energy structures of all sequences. In the lowest energy form of the C3-[AAF]G4-C5 sequence I, the fluorenyl rings point in the 3' direction along the modified strand and the acetyl in the 5' direction. These orientations are reversed in the second lowest energy structure of this sequence, and the energy of this structure is 1.4 kcal/mol higher. Watson-Crick hydrogen bonding is intact in both structures. In the two lowest energy structures of the A3-[AAF]G4-T5 sequence II, the AAF is also located in the minor groove with Watson-Crick hydrogen bonding intact. However, in the lowest energy form, the fluorenyl rings point in the 5' direction and the acetyl in the 3' direction. The energy of the structure with opposite orientation is 5.1 kcal/mol higher. In sequence III with adenine mismatched to the modified guanine, the lowest energy form also had the fluorenyl rings oriented 5' in the minor groove with intact Watson- Crick base pairing. However, the mispaired adenine adopts a syn orientation with Hoogsteen pairing to the modified guanine. These results suggest that the orientation of the AAF in the minor groove may be DNA sequence dependent. Mobile aspects of favored structures derived from molecular dynamics simulations with explicit solvent and salt support the essentially undistorting nature of this lesion, which is in harmony with its persistence in mammalian systems.",
author = "Rosalyn Grad and Robert Shapiro and Hingerty, {Brian E.} and Suse Broyde",
year = "1997",
month = "10",
doi = "10.1021/tx970092e",
language = "English (US)",
volume = "10",
pages = "1123--1132",
journal = "Chemical Research in Toxicology",
issn = "0893-228X",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - A molecular mechanics and dynamics study of the minor adduct between DNA and the carcinogen 2-(acetylamino)fluorene (dG-N2-AAF)

AU - Grad, Rosalyn

AU - Shapiro, Robert

AU - Hingerty, Brian E.

AU - Broyde, Suse

PY - 1997/10

Y1 - 1997/10

N2 - Experimental studies involving the carcinogenic aromatic amine 2- (acetylamino)fluorene (AAF) have afforded two acetylated DNA adducts, the major one bound to C8 of guanine and a minor adduct bound to N2 of guanine. The minor adduct may be impotent in carcinogenesis because it persists, while the major adduct is rapidly repaired. Primer extension studies of the minor adduct have indicated that it blocks DNA synthesis, with some bypass and misincorporation of adenine opposite the lesion [Shibutani, S., and Grollman, A. P. (1993) Chem. Res. Toxicol. 6, 819-824]. No experimental structural information is available for this adduct. Extensive minimized potential energy searches involving thousands of trials and molecular dynamics simulations were used to study the conformation of this adduct in three sequences: I, d(C1-G2-C3-[AAF]G4-C5-G6-C7)·d(G8-C9-G10-C11-G12-C13- G14); II, the sequence of Shibutani and Grollman, d(C1-T2-A3-[AAF]G4-T5-C6- A7)·d(T8-G9-A10-C11-T12-A13-G14); and III, which is the same as II but with a mismatched adenine in position 11, opposite the lesion. AAF was located in the minor groove in the low-energy structures of all sequences. In the lowest energy form of the C3-[AAF]G4-C5 sequence I, the fluorenyl rings point in the 3' direction along the modified strand and the acetyl in the 5' direction. These orientations are reversed in the second lowest energy structure of this sequence, and the energy of this structure is 1.4 kcal/mol higher. Watson-Crick hydrogen bonding is intact in both structures. In the two lowest energy structures of the A3-[AAF]G4-T5 sequence II, the AAF is also located in the minor groove with Watson-Crick hydrogen bonding intact. However, in the lowest energy form, the fluorenyl rings point in the 5' direction and the acetyl in the 3' direction. The energy of the structure with opposite orientation is 5.1 kcal/mol higher. In sequence III with adenine mismatched to the modified guanine, the lowest energy form also had the fluorenyl rings oriented 5' in the minor groove with intact Watson- Crick base pairing. However, the mispaired adenine adopts a syn orientation with Hoogsteen pairing to the modified guanine. These results suggest that the orientation of the AAF in the minor groove may be DNA sequence dependent. Mobile aspects of favored structures derived from molecular dynamics simulations with explicit solvent and salt support the essentially undistorting nature of this lesion, which is in harmony with its persistence in mammalian systems.

AB - Experimental studies involving the carcinogenic aromatic amine 2- (acetylamino)fluorene (AAF) have afforded two acetylated DNA adducts, the major one bound to C8 of guanine and a minor adduct bound to N2 of guanine. The minor adduct may be impotent in carcinogenesis because it persists, while the major adduct is rapidly repaired. Primer extension studies of the minor adduct have indicated that it blocks DNA synthesis, with some bypass and misincorporation of adenine opposite the lesion [Shibutani, S., and Grollman, A. P. (1993) Chem. Res. Toxicol. 6, 819-824]. No experimental structural information is available for this adduct. Extensive minimized potential energy searches involving thousands of trials and molecular dynamics simulations were used to study the conformation of this adduct in three sequences: I, d(C1-G2-C3-[AAF]G4-C5-G6-C7)·d(G8-C9-G10-C11-G12-C13- G14); II, the sequence of Shibutani and Grollman, d(C1-T2-A3-[AAF]G4-T5-C6- A7)·d(T8-G9-A10-C11-T12-A13-G14); and III, which is the same as II but with a mismatched adenine in position 11, opposite the lesion. AAF was located in the minor groove in the low-energy structures of all sequences. In the lowest energy form of the C3-[AAF]G4-C5 sequence I, the fluorenyl rings point in the 3' direction along the modified strand and the acetyl in the 5' direction. These orientations are reversed in the second lowest energy structure of this sequence, and the energy of this structure is 1.4 kcal/mol higher. Watson-Crick hydrogen bonding is intact in both structures. In the two lowest energy structures of the A3-[AAF]G4-T5 sequence II, the AAF is also located in the minor groove with Watson-Crick hydrogen bonding intact. However, in the lowest energy form, the fluorenyl rings point in the 5' direction and the acetyl in the 3' direction. The energy of the structure with opposite orientation is 5.1 kcal/mol higher. In sequence III with adenine mismatched to the modified guanine, the lowest energy form also had the fluorenyl rings oriented 5' in the minor groove with intact Watson- Crick base pairing. However, the mispaired adenine adopts a syn orientation with Hoogsteen pairing to the modified guanine. These results suggest that the orientation of the AAF in the minor groove may be DNA sequence dependent. Mobile aspects of favored structures derived from molecular dynamics simulations with explicit solvent and salt support the essentially undistorting nature of this lesion, which is in harmony with its persistence in mammalian systems.

UR - http://www.scopus.com/inward/record.url?scp=0030801750&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030801750&partnerID=8YFLogxK

U2 - 10.1021/tx970092e

DO - 10.1021/tx970092e

M3 - Article

VL - 10

SP - 1123

EP - 1132

JO - Chemical Research in Toxicology

JF - Chemical Research in Toxicology

SN - 0893-228X

IS - 10

ER -