### Abstract

It is shown that for every {Mathematical expression} there exists a doubling subset of {Mathematical expression} that does not admit a bi-Lipschitz embedding into {Mathematical expression} for any {Mathematical expression}.

Original language | English (US) |
---|---|

Pages (from-to) | 1-12 |

Number of pages | 12 |

Journal | Geometriae Dedicata |

DOIs | |

State | Accepted/In press - 2013 |

### Fingerprint

### Keywords

- Doubling metric spaces
- Heisenberg group
- Metric embeddings

### ASJC Scopus subject areas

- Geometry and Topology

### Cite this

*Geometriae Dedicata*, 1-12. https://doi.org/10.1007/s10711-013-9924-4

**A doubling subset of {Mathematical expression} for {Mathematical expression} that is inherently infinite dimensional.** / Lafforgue, Vincent; Naor, Assaf.

Research output: Contribution to journal › Article

*Geometriae Dedicata*, pp. 1-12. https://doi.org/10.1007/s10711-013-9924-4

}

TY - JOUR

T1 - A doubling subset of {Mathematical expression} for {Mathematical expression} that is inherently infinite dimensional

AU - Lafforgue, Vincent

AU - Naor, Assaf

PY - 2013

Y1 - 2013

N2 - It is shown that for every {Mathematical expression} there exists a doubling subset of {Mathematical expression} that does not admit a bi-Lipschitz embedding into {Mathematical expression} for any {Mathematical expression}.

AB - It is shown that for every {Mathematical expression} there exists a doubling subset of {Mathematical expression} that does not admit a bi-Lipschitz embedding into {Mathematical expression} for any {Mathematical expression}.

KW - Doubling metric spaces

KW - Heisenberg group

KW - Metric embeddings

UR - http://www.scopus.com/inward/record.url?scp=84889877341&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84889877341&partnerID=8YFLogxK

U2 - 10.1007/s10711-013-9924-4

DO - 10.1007/s10711-013-9924-4

M3 - Article

SP - 1

EP - 12

JO - Geometriae Dedicata

JF - Geometriae Dedicata

SN - 0046-5755

ER -