A conserved regulatory element present in all Drosophila rhodopsin genes mediates Pax6 functions and participates in the fine-tuning of cell-specific expression

Dmitri Papatsenko, Anna Nazina, Claude Desplan

Research output: Contribution to journalArticle

Abstract

The Drosophila rhodopsin genes (rh's) represent a unique family of highly regulated cell-specific genes, where each member has its own expression pattern in the visual system. Extensive analysis of the rh's has revealed several functional elements that are involved in cell-specificity. We have investigated the functional role of the RCSI/P3 site that is found in the proximal promoter of all Drosophila rh genes. This sequence is remarkably conserved in evolution and is located 15-30 bp upstream of the TATA box. We have previously shown that, in the context of the rh1 promoter, this element is recognized in vivo by a Pax6 protein, the master regulator of eye development. Thus, rh regulation might represent the ancestral function of Pax6. Here, we investigated the role of the RCSI/P3 sequence in the other rh genes and show that they also mediate Pax6 function. We also tested the potential impact of the various RCSI/P3 sequences on the precise cell-specific expression of rh genes. Our results demonstrate that, even though all RCSI/P3 sequences bind Pax6, they are clearly distinct in various rh promoters and these differences are conserved throughout evolution: RCSI/P3 appears to participate in the fine-tuning of cell-specificity. We also show that Pax6 or a related Pax protein may be involved in the regulation of olfactory genes. Therefore, in addition to performing a global photoreceptor-specific function, RCSI also appears to mediate the combined action of Pax6 and other factors and to contribute to rh regulation in subsets of photoreceptors.

Original languageEnglish (US)
Pages (from-to)143-153
Number of pages11
JournalMechanisms of Development
Volume101
Issue number1-2
DOIs
StatePublished - 2001

Fingerprint

Rhodopsin
Drosophila
Genes
TATA Box
Proteins
Gene Expression

Keywords

  • Drosophila rhodopsin
  • Pax6

ASJC Scopus subject areas

  • Developmental Biology
  • Developmental Neuroscience

Cite this

@article{827e388878d643b19279632bc5f1eef8,
title = "A conserved regulatory element present in all Drosophila rhodopsin genes mediates Pax6 functions and participates in the fine-tuning of cell-specific expression",
abstract = "The Drosophila rhodopsin genes (rh's) represent a unique family of highly regulated cell-specific genes, where each member has its own expression pattern in the visual system. Extensive analysis of the rh's has revealed several functional elements that are involved in cell-specificity. We have investigated the functional role of the RCSI/P3 site that is found in the proximal promoter of all Drosophila rh genes. This sequence is remarkably conserved in evolution and is located 15-30 bp upstream of the TATA box. We have previously shown that, in the context of the rh1 promoter, this element is recognized in vivo by a Pax6 protein, the master regulator of eye development. Thus, rh regulation might represent the ancestral function of Pax6. Here, we investigated the role of the RCSI/P3 sequence in the other rh genes and show that they also mediate Pax6 function. We also tested the potential impact of the various RCSI/P3 sequences on the precise cell-specific expression of rh genes. Our results demonstrate that, even though all RCSI/P3 sequences bind Pax6, they are clearly distinct in various rh promoters and these differences are conserved throughout evolution: RCSI/P3 appears to participate in the fine-tuning of cell-specificity. We also show that Pax6 or a related Pax protein may be involved in the regulation of olfactory genes. Therefore, in addition to performing a global photoreceptor-specific function, RCSI also appears to mediate the combined action of Pax6 and other factors and to contribute to rh regulation in subsets of photoreceptors.",
keywords = "Drosophila rhodopsin, Pax6",
author = "Dmitri Papatsenko and Anna Nazina and Claude Desplan",
year = "2001",
doi = "10.1016/S0925-4773(00)00581-5",
language = "English (US)",
volume = "101",
pages = "143--153",
journal = "Mechanisms of Development",
issn = "0925-4773",
publisher = "Elsevier Ireland Ltd",
number = "1-2",

}

TY - JOUR

T1 - A conserved regulatory element present in all Drosophila rhodopsin genes mediates Pax6 functions and participates in the fine-tuning of cell-specific expression

AU - Papatsenko, Dmitri

AU - Nazina, Anna

AU - Desplan, Claude

PY - 2001

Y1 - 2001

N2 - The Drosophila rhodopsin genes (rh's) represent a unique family of highly regulated cell-specific genes, where each member has its own expression pattern in the visual system. Extensive analysis of the rh's has revealed several functional elements that are involved in cell-specificity. We have investigated the functional role of the RCSI/P3 site that is found in the proximal promoter of all Drosophila rh genes. This sequence is remarkably conserved in evolution and is located 15-30 bp upstream of the TATA box. We have previously shown that, in the context of the rh1 promoter, this element is recognized in vivo by a Pax6 protein, the master regulator of eye development. Thus, rh regulation might represent the ancestral function of Pax6. Here, we investigated the role of the RCSI/P3 sequence in the other rh genes and show that they also mediate Pax6 function. We also tested the potential impact of the various RCSI/P3 sequences on the precise cell-specific expression of rh genes. Our results demonstrate that, even though all RCSI/P3 sequences bind Pax6, they are clearly distinct in various rh promoters and these differences are conserved throughout evolution: RCSI/P3 appears to participate in the fine-tuning of cell-specificity. We also show that Pax6 or a related Pax protein may be involved in the regulation of olfactory genes. Therefore, in addition to performing a global photoreceptor-specific function, RCSI also appears to mediate the combined action of Pax6 and other factors and to contribute to rh regulation in subsets of photoreceptors.

AB - The Drosophila rhodopsin genes (rh's) represent a unique family of highly regulated cell-specific genes, where each member has its own expression pattern in the visual system. Extensive analysis of the rh's has revealed several functional elements that are involved in cell-specificity. We have investigated the functional role of the RCSI/P3 site that is found in the proximal promoter of all Drosophila rh genes. This sequence is remarkably conserved in evolution and is located 15-30 bp upstream of the TATA box. We have previously shown that, in the context of the rh1 promoter, this element is recognized in vivo by a Pax6 protein, the master regulator of eye development. Thus, rh regulation might represent the ancestral function of Pax6. Here, we investigated the role of the RCSI/P3 sequence in the other rh genes and show that they also mediate Pax6 function. We also tested the potential impact of the various RCSI/P3 sequences on the precise cell-specific expression of rh genes. Our results demonstrate that, even though all RCSI/P3 sequences bind Pax6, they are clearly distinct in various rh promoters and these differences are conserved throughout evolution: RCSI/P3 appears to participate in the fine-tuning of cell-specificity. We also show that Pax6 or a related Pax protein may be involved in the regulation of olfactory genes. Therefore, in addition to performing a global photoreceptor-specific function, RCSI also appears to mediate the combined action of Pax6 and other factors and to contribute to rh regulation in subsets of photoreceptors.

KW - Drosophila rhodopsin

KW - Pax6

UR - http://www.scopus.com/inward/record.url?scp=0035117965&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035117965&partnerID=8YFLogxK

U2 - 10.1016/S0925-4773(00)00581-5

DO - 10.1016/S0925-4773(00)00581-5

M3 - Article

VL - 101

SP - 143

EP - 153

JO - Mechanisms of Development

JF - Mechanisms of Development

SN - 0925-4773

IS - 1-2

ER -