3-Methyladenine and 7-methylguanine exhibit no preferential removal from the transcribed strand of the dihydrofolate reductase gene in Chinese hamster ovary B11 cells

Wei Wang, Anuradha Sitaram, David A. Scicchitano

Research output: Contribution to journalArticle

Abstract

The removal of cylclobutane pyrimidine dimers from cellular DNA occurs preferentially in actively transcribed genes of cells subjected to ultraviolet radiation. In contrast, reports concerning the transcription-dependent repair of N-methylpurines formed in cellular DNA following exposure to methylating agents are quite conflicting, with some studies suggesting that no biased clearance of these lesions occurs and others indicating that preferential removal of these adducts transpires in active genetic loci. Even in the cases where no preferential clearance was demonstrated, a slight but statistically insignificant biased removal of N-methylpurines from the transcribed strand of active genes was often evident. We proposed that these results might be due to the preferential clearance of only one of the two principal N-methylpurines formed, 3-methyladenine, or to the source of the methylating species to which the cells were exposed. Therefore, we investigated the clearance of 3-methyladenine and 7-methylguanine as individual lesions from the amplified dihydrofolate reductase gene of Chinese hamster ovary cells, and we examined the gene-specific removal of N-methylpurines formed by several different methylating agents as well. We observed no biased clearance of 3-methyladenine toward the transcribed strand of the locus being examined. This result indicates that any minor gene-specific preferential repair that has been observed previously for N-methylpurines in toto - which actually reflects the removal of the predominant methylated purine 7-methylguanine - is not due to biased clearance of the transcription-inhibiting 3-methyladenine lesion. Likewise, we found no preferential clearance of N-methylpurines from the transcribed strand of the dihydrofolate reductase gene, regardless of the source of the methylating species employed to damage the DNA. These collected data demonstrate that neither 3-methyladenine nor 7-methylguanine is cleared in a transcription-dependent manner from the active dihydrofolate reductase gene of Chinese hamster ovary cells.

Original languageEnglish (US)
Pages (from-to)1798-1804
Number of pages7
JournalBiochemistry
Volume34
Issue number5
StatePublished - 1995

Fingerprint

Tetrahydrofolate Dehydrogenase
Cricetulus
Ovary
Genes
Transcription
DNA
Repair
Cells
Pyrimidine Dimers
Genetic Loci
7-methylguanine
3-methyladenine
Ultraviolet radiation
DNA Damage
Radiation

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{719e1cec16a54f3fa255fd9c25e780f2,
title = "3-Methyladenine and 7-methylguanine exhibit no preferential removal from the transcribed strand of the dihydrofolate reductase gene in Chinese hamster ovary B11 cells",
abstract = "The removal of cylclobutane pyrimidine dimers from cellular DNA occurs preferentially in actively transcribed genes of cells subjected to ultraviolet radiation. In contrast, reports concerning the transcription-dependent repair of N-methylpurines formed in cellular DNA following exposure to methylating agents are quite conflicting, with some studies suggesting that no biased clearance of these lesions occurs and others indicating that preferential removal of these adducts transpires in active genetic loci. Even in the cases where no preferential clearance was demonstrated, a slight but statistically insignificant biased removal of N-methylpurines from the transcribed strand of active genes was often evident. We proposed that these results might be due to the preferential clearance of only one of the two principal N-methylpurines formed, 3-methyladenine, or to the source of the methylating species to which the cells were exposed. Therefore, we investigated the clearance of 3-methyladenine and 7-methylguanine as individual lesions from the amplified dihydrofolate reductase gene of Chinese hamster ovary cells, and we examined the gene-specific removal of N-methylpurines formed by several different methylating agents as well. We observed no biased clearance of 3-methyladenine toward the transcribed strand of the locus being examined. This result indicates that any minor gene-specific preferential repair that has been observed previously for N-methylpurines in toto - which actually reflects the removal of the predominant methylated purine 7-methylguanine - is not due to biased clearance of the transcription-inhibiting 3-methyladenine lesion. Likewise, we found no preferential clearance of N-methylpurines from the transcribed strand of the dihydrofolate reductase gene, regardless of the source of the methylating species employed to damage the DNA. These collected data demonstrate that neither 3-methyladenine nor 7-methylguanine is cleared in a transcription-dependent manner from the active dihydrofolate reductase gene of Chinese hamster ovary cells.",
author = "Wei Wang and Anuradha Sitaram and Scicchitano, {David A.}",
year = "1995",
language = "English (US)",
volume = "34",
pages = "1798--1804",
journal = "Biochemistry",
issn = "0006-2960",
number = "5",

}

TY - JOUR

T1 - 3-Methyladenine and 7-methylguanine exhibit no preferential removal from the transcribed strand of the dihydrofolate reductase gene in Chinese hamster ovary B11 cells

AU - Wang, Wei

AU - Sitaram, Anuradha

AU - Scicchitano, David A.

PY - 1995

Y1 - 1995

N2 - The removal of cylclobutane pyrimidine dimers from cellular DNA occurs preferentially in actively transcribed genes of cells subjected to ultraviolet radiation. In contrast, reports concerning the transcription-dependent repair of N-methylpurines formed in cellular DNA following exposure to methylating agents are quite conflicting, with some studies suggesting that no biased clearance of these lesions occurs and others indicating that preferential removal of these adducts transpires in active genetic loci. Even in the cases where no preferential clearance was demonstrated, a slight but statistically insignificant biased removal of N-methylpurines from the transcribed strand of active genes was often evident. We proposed that these results might be due to the preferential clearance of only one of the two principal N-methylpurines formed, 3-methyladenine, or to the source of the methylating species to which the cells were exposed. Therefore, we investigated the clearance of 3-methyladenine and 7-methylguanine as individual lesions from the amplified dihydrofolate reductase gene of Chinese hamster ovary cells, and we examined the gene-specific removal of N-methylpurines formed by several different methylating agents as well. We observed no biased clearance of 3-methyladenine toward the transcribed strand of the locus being examined. This result indicates that any minor gene-specific preferential repair that has been observed previously for N-methylpurines in toto - which actually reflects the removal of the predominant methylated purine 7-methylguanine - is not due to biased clearance of the transcription-inhibiting 3-methyladenine lesion. Likewise, we found no preferential clearance of N-methylpurines from the transcribed strand of the dihydrofolate reductase gene, regardless of the source of the methylating species employed to damage the DNA. These collected data demonstrate that neither 3-methyladenine nor 7-methylguanine is cleared in a transcription-dependent manner from the active dihydrofolate reductase gene of Chinese hamster ovary cells.

AB - The removal of cylclobutane pyrimidine dimers from cellular DNA occurs preferentially in actively transcribed genes of cells subjected to ultraviolet radiation. In contrast, reports concerning the transcription-dependent repair of N-methylpurines formed in cellular DNA following exposure to methylating agents are quite conflicting, with some studies suggesting that no biased clearance of these lesions occurs and others indicating that preferential removal of these adducts transpires in active genetic loci. Even in the cases where no preferential clearance was demonstrated, a slight but statistically insignificant biased removal of N-methylpurines from the transcribed strand of active genes was often evident. We proposed that these results might be due to the preferential clearance of only one of the two principal N-methylpurines formed, 3-methyladenine, or to the source of the methylating species to which the cells were exposed. Therefore, we investigated the clearance of 3-methyladenine and 7-methylguanine as individual lesions from the amplified dihydrofolate reductase gene of Chinese hamster ovary cells, and we examined the gene-specific removal of N-methylpurines formed by several different methylating agents as well. We observed no biased clearance of 3-methyladenine toward the transcribed strand of the locus being examined. This result indicates that any minor gene-specific preferential repair that has been observed previously for N-methylpurines in toto - which actually reflects the removal of the predominant methylated purine 7-methylguanine - is not due to biased clearance of the transcription-inhibiting 3-methyladenine lesion. Likewise, we found no preferential clearance of N-methylpurines from the transcribed strand of the dihydrofolate reductase gene, regardless of the source of the methylating species employed to damage the DNA. These collected data demonstrate that neither 3-methyladenine nor 7-methylguanine is cleared in a transcription-dependent manner from the active dihydrofolate reductase gene of Chinese hamster ovary cells.

UR - http://www.scopus.com/inward/record.url?scp=0028932764&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028932764&partnerID=8YFLogxK

M3 - Article

VL - 34

SP - 1798

EP - 1804

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 5

ER -