No photo of Robert Fergus

Robert Fergus

Associate Professor of Computer Science

    20012019
    If you made any changes in Pure, your changes will be visible here soon.

    Research Output 2001 2019

    2001

    Efficient methods for object recognition using the constellation model

    Fergus, R., Weber, M. & Perona, P., 2001, Caltech Technical Report.

    Research output: Book/ReportCommissioned report

    2003

    A Bayesian approach to unsupervised one-shot learning of object categories

    Fei-Fei, L., Fergus, R. & Perona, P., 2003, Proceedings of the IEEE International Conference on Computer Vision. Vol. 2. p. 1134-1141 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Motorcycles
    Probability density function
    Aircraft
    Statistical Models

    Object class recognition by unsupervised scale-invariant learning

    Fergus, R., Perona, P. & Zisserman, A., 2003, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 2.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Maximum likelihood
    Animals
    Entropy
    Railroad cars
    Detectors
    2004
    Filter
    Tigers
    Search Engine
    Camelus
    Equidae

    Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories

    Fei-Fei, L., Fergus, R. & Perona, P., 2004, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. January ed. IEEE Computer Society, Vol. 2004-January. 1384978

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Maximum likelihood
    Information use
    Statistical Models
    2005

    A sparse object category model for efficient learning and exhaustive recognition

    Fergus, R., Perona, P. & Zisserman, A., 2005, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. Schmid, C., Soatto, S. & Tomasi, C. (eds.). Vol. 1. p. 380-387 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Detectors
    Object recognition
    Model structures
    Stars
    Topology

    Learning object categories from Google's image search

    Fergus, R., Fei-Fei, L., Perona, P. & Zisserman, A., 2005, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005. Vol. II. p. 1816-1823 8 p. 1544937

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Search engines
    Object recognition
    Internet

    Sampling methods for unsupervised learning

    Fergus, R., Zisserman, A. & Perona, P., 2005, Advances in Neural Information Processing Systems 17 - Proceedings of the 2004 Conference, NIPS 2004. Neural information processing systems foundation

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Unsupervised learning
    Sampling
    Computer vision
    2006

    A sparse object category model for efficient learning and complete recognition

    Fergus, R., Perona, P. & Zisserman, A., 2006, Toward category-level object recognition. Ponce, J., Herbert, M., Schmid, C. & Zisserman, A. (eds.). Springer, (1470).

    Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)

    Object class recognition by unsupervised scale-invariant learning

    Fergus, R., Perona, P. & Zisserman, A., 2006, Cognitive vision systems. Nagel, H. H. (ed.). Springer LNCS, p. 3948

    Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)

    One-shot learning of object categories

    Fei-Fei, L., Fergus, R. & Perona, P., Apr 2006, In : IEEE Transactions on Pattern Analysis and Machine Intelligence. 28, 4, p. 594-611 18 p.

    Research output: Contribution to journalArticle

    Bayesian Approach
    Model Category
    Probability density function
    Maximum likelihood
    Model

    Random lens imaging

    Fergus, R., Torralba, A. & Freeman, W. T., 2006, MIT CSAIL Technical Report 2006-058.

    Research output: Book/ReportOther report

    Removing camera shake from a single photograph

    Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T. & Freeman, W. T., 2006, ACM SIGGRAPH 2006 Papers, SIGGRAPH '06. p. 787-794 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Cameras
    Deconvolution

    Removing camera shake from a single photograph

    Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T. & Freeman, W. T., Jul 2006, ACM Transactions on Graphics. 3 ed. Vol. 25. p. 787-794 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Cameras
    Deconvolution
    2007

    Image and depth from a conventional camera with a coded aperture

    Levin, A., Fergus, R., Durand, F. & Freeman, W. T., 2007, Proceedings of ACM SIGGRAPH 2007. 70

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Cameras
    Camera lenses
    Image resolution
    Hardware
    Recovery

    Image and depth from a conventional camera with a coded aperture

    Levin, A., Fergus, R., Durand, F. & Freeman, W. T., Jul 29 2007, In : ACM Transactions on Graphics. 26, 3, 1276464.

    Research output: Contribution to journalArticle

    Cameras
    Camera lenses
    Image resolution
    Hardware
    Recovery

    Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories

    Fei-Fei, L., Fergus, R. & Perona, P., Apr 2007, In : Computer Vision and Image Understanding. 106, 1, p. 59-70 12 p.

    Research output: Contribution to journalArticle

    Maximum likelihood
    Information use
    Statistical Models

    Weakly supervised scale-invariant learning of models for visual recognition

    Fergus, R., Perona, P. & Zisserman, A., Mar 2007, In : International Journal of Computer Vision. 71, 3, p. 273-303 31 p.

    Research output: Contribution to journalArticle

    Animals
    Railroad cars
    Statistical Models
    2008

    80 million tiny images: A large data set for nonparametric object and scene recognition

    Torralba, A., Fergus, R. & Freeman, W. T., 2008, In : IEEE Transactions on Pattern Analysis and Machine Intelligence. 30, 11, p. 1958-1970 13 p.

    Research output: Contribution to journalArticle

    Large Data Sets
    Semantics
    Internet
    Image resolution
    WordNet

    Small codes and large image databases for recognition

    Torralba, A., Fergus, R. & Weiss, Y., 2008, 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. 4587633

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Internet
    Binary codes
    Object recognition
    Computer graphics
    Computer hardware
    2009

    Dark flash photography

    Krishnan, D. & Fergus, R., Jul 27 2009, In : ACM Transactions on Graphics. 28, 3, 96.

    Research output: Contribution to journalArticle

    Photography
    Cameras
    Lighting
    Infrared radiation
    Wavelength

    Fast image deconvolution using hyper-laplacian priors

    Krishnan, D. & Fergus, R., 2009, Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. p. 1033-1041 9 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Deconvolution
    Pixels
    Table lookup
    Image processing
    Polynomials

    Learning invariant features through topographic filter maps

    Kavukcuoglu, K., Ranzato, MA., Fergus, R. & LeCun, Y., 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. p. 1605-1612 8 p. 5206545

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Image recognition
    Object recognition
    Feature extraction
    Classifiers
    Detectors

    Object recognition by scene alignment

    Russell, B. C., Torralba, A., Liu, C., Fergus, R. & Freeman, W. T., 2009, Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Object recognition
    Labels
    Statistical Models

    Semi-supervised learning in gigantic image collections

    Fergus, R., Weiss, Y. & Torralba, A., 2009, Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. p. 522-530 9 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Supervised learning
    Labels
    Eigenvalues and eigenfunctions
    Internet
    Learning systems

    Spectral hashing

    Weiss, Y., Torralba, A. & Fergus, R., 2009, Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. p. 1753-1760 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Eigenvalues and eigenfunctions
    Semantics
    Hamming distance
    Binary codes
    Experiments
    2010

    Case for automated detection of diabetic retinopathy

    Silberman, N., Ahlrich, K., Fergus, R. & Subramanian, L., 2010, Artificial Intelligence for Development - Papers from the AAAI Spring Symposium, Technical Report. Vol. SS-10-01. p. 85-90 6 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Computer vision
    Medical problems
    Explosions
    Color

    Convolutional learning of spatio-temporal features

    Taylor, G. W., Fergus, R., LeCun, Y. & Bregler, C., 2010, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 6 ed. Vol. 6316 LNCS. p. 140-153 14 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 6316 LNCS, no. PART 6).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Action Recognition
    Image Sequence
    Parametrization
    Model
    Flow Field

    Deconvolutional networks

    Zeiler, M. D., Krishnan, D., Taylor, G. W. & Fergus, R., 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010. p. 2528-2535 8 p. 5539957

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Decomposition
    Detectors

    Learning object categories from internet image searches

    Fergus, R., Fei-Fei, L., Perona, P. & Zisserman, A., Aug 2010, In : Proceedings of the IEEE. 98, 8, p. 1453-1466 14 p., 5483225.

    Research output: Contribution to journalArticle

    Internet
    Search engines
    Semantics

    Pose-sensitive embedding by nonlinear NCA regression

    Taylor, G. W., Fergus, R., Williams, G., Spiro, I. & Bregler, C., 2010, Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Regression analysis
    Labeling

    Semantic label sharing for learning with many categories

    Fergus, R., Bernal, H., Weiss, Y. & Torralba, A., 2010, Computer Vision, ECCV 2010 - 11th European Conference on Computer Vision, Proceedings. PART 1 ed. Vol. 6311 LNCS. p. 762-775 14 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 6311 LNCS, no. PART 1).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Labels
    Sharing
    Semantics
    Object recognition
    WordNet
    2011

    Adaptive deconvolutional networks for mid and high level feature learning

    Zeiler, M. D., Taylor, G. W. & Fergus, R., 2011, 2011 International Conference on Computer Vision, ICCV 2011. p. 2018-2025 8 p. 6126474

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Classifiers
    Decomposition

    Blind deconvolution using a normalized sparsity measure

    Krishnan, D., Tay, T. & Fergus, R., 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011. p. 233-240 8 p. 5995521

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Deconvolution
    Cost functions
    Costs

    Facial expression transfer with input-output Temporal Restricted Boltzmann Machines

    Zeiler, M. D., Taylor, G. W., Sigal, L., Matthews, I. & Fergus, R., 2011, Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Probability distributions

    Indoor scene segmentation using a structured light sensor

    Silberman, N. & Fergus, R., 2011, 2011 IEEE International Conference on Computer Vision Workshops, ICCV Workshops 2011. p. 601-608 8 p. 6130298

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Sensors
    Labels

    Learning binary projections for large scale image search

    Grauman, K. & Fergus, R., 2011, Computer vision. Cipolla, R., Battiato, S. & Farinella, G. (eds.). Springer

    Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)

    Learning invariance through imitation

    Taylor, G. W., Spiro, I., Bregler, C. & Fergus, R., 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011. p. 2729-2736 8 p. 5995538

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Invariance
    Labels
    Lighting
    2012

    A hybrid neural network-latent topic model

    Wan, L., Zhu, L. & Fergus, R., 2012, In : Journal of Machine Learning Research. 22, p. 1287-1294 8 p.

    Research output: Contribution to journalArticle

    Neural Networks
    Neural networks
    Hybrid Model
    Discriminative Training
    Model

    A hybrid neural-network latent topic model

    Wan, L., Zhu, L. & Fergus, R., 2012, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Indoor segmentation and support inference from RGBD images

    Silberman, N., Hoiem, D., Kohli, P. & Fergus, R., 2012, Computer Vision, ECCV 2012 - 12th European Conference on Computer Vision, Proceedings. PART 5 ed. Vol. 7576 LNCS. p. 746-760 15 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 7576 LNCS, no. PART 5).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Segmentation
    Integer programming
    Integer Programming
    Annotation
    Verify

    Multidimensional spectral hashing

    Weiss, Y., Fergus, R. & Torralba, A., 2012, Computer Vision, ECCV 2012 - 12th European Conference on Computer Vision, Proceedings. PART 5 ed. Vol. 7576 LNCS. p. 340-353 14 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 7576 LNCS, no. PART 5).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Hashing
    Eigenvalues and eigenfunctions
    Binary codes
    Affine transformation
    Binary Code

    Nonparametric image parsing using adaptive neighbor sets

    Eigen, D. & Fergus, R., 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012. p. 2799-2806 8 p. 6248004

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Pixels
    2013

    Learning binary hash codes for large-scale image search

    Grauman, K. & Fergus, R., 2013, Machine Learning for Computer Vision. Vol. 411. p. 49-87 39 p. (Studies in Computational Intelligence; vol. 411).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    Binary codes
    Content based retrieval
    Object recognition
    Spectrum analysis
    Data structures

    Reconnaissance of the hr 8799 exosolar system. I. near-infrared spectroscopy

    Roberts, L. C., Oppenheimer, B. R., Baranec, C., Beichman, C., Brenner, D., Burruss, R., Cady, E., Crepp, J. R., Dekany, R., Fergus, R., Hale, D., Hillenbrand, L., Hinkley, S., Hogg, D. W., King, D., Ligon, E. R., Lockhart, T., Nilsson, R., Parry, I. R., Pueyo, L. & 13 others, Rice, E., Roberts, J. E., Roberts, L. C., Shao, M., Sivaramakrishnan, A., Soummer, R., Truong, T., Vasisht, G., Veicht, A., Vescelus, F., Wallace, J. K., Zhai, C. & Zimmerman, N., May 1 2013, In : Astrophysical Journal. 768, 1, 24.

    Research output: Contribution to journalArticle

    reconnaissance
    infrared spectroscopy
    planets
    near infrared
    planet

    Regularization of neural networks using DropConnect

    Wan, L., Zeiler, M., Zhang, S., LeCun, Y. & Fergus, R., 2013, 30th International Conference on Machine Learning, ICML 2013. PART 3 ed. International Machine Learning Society (IMLS), p. 2095-2103 9 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Image recognition
    drop-out
    neural network
    Chemical activation
    Neural networks

    Restoring an image taken through a window covered with dirt or rain

    Eigen, D., Krishnan, D. & Fergus, R., 2013, Proceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013. Institute of Electrical and Electronics Engineers Inc., p. 633-640 8 p. 6751188

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Rain
    Cameras
    Enclosures
    Image processing
    Neural networks

    Stochastic pooling for regularization of deep convolutional neural networks

    Zeiler, M. D. & Fergus, R., Jan 1 2013.

    Research output: Contribution to conferencePaper

    neural network
    Chemical activation
    Neural networks
    drop-out
    activation

    Stochastic pooling for regularization of deep convolutional neural networks

    Zeiler, M. & Fergus, R., 2013, Proceedings of the International Conference on Learning Representation (ICLR).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution